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Abstract. The problem behind this paper is the proper measurement of the
degree of quality/acceptability/distance to arbitrage of trades. We are narrowing
the class of coherent acceptability indices introduced by Cherny and Madan [7] by
imposing an additional mathematical property. For this, we introduce the notion of
a concave distortion semigroup as a family (Ψt)t≥0 of concave increasing functions
[0, 1] → [0, 1] satisfying the semigroup property

Ψs ◦ Ψt = Ψs+t, s, t ≥ 0.

The goal of the paper is the investigation of these semigroups with regard to the
following aspects:

• representation of distortion semigroups;
• properties of distortion semigroups desirable from the economical or mathe-

matical perspective;
• determining which concave distortions belong to some distortion semigroup.

Key words and phrases: Coherent acceptability index, concave distortion
semigroup, generator of a distortion semigroup, Weighted V@R.

1 Introduction

1. Two problems. Let X be a random variable modelling the discounted profit and
loss produced by some portfolio over the unit time period, i.e. X = W1 −W0, where W0

and W1 denote the initial and terminal value of the portfolio, respectively. It is important
for various purposes to measure the degree of quality of X. This is needed, in particular,
for measuring the degree of market efficiency and for portfolio optimization; measures of
performance can also be applied to pricing through the No Good Deals condition. The
classical measures of performance are the Sharpe ratio SR(X) = EX/σ(X), where σ is the
standard deviation, the Risk-Adjusted Return on Capital RAROC(X) = EX/V@R(X),
where V@R is the Value at Risk, and the Gain-Loss Ratio GLR(X) = E(X)/EX−, where
X− = max{−X, 0}. Each of these measures has its advantages and disadvantages. Cherny
and Madan [7] addressed the following problem: which properties should a proper measure
of performance satisfy? They introduced the notion of a coherent acceptability index as a
map α : L∞ → [0,∞] (we have a fixed probability space (Ω,F ,P)) satisfying the axioms:
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• (Quasi-concavity) if α(X) ≥ z and α(Y ) ≥ z, then α(X + Y ) ≥ z;
• (Monotonicity) if X ≤ Y , then α(X) ≤ α(Y );
• (Scale invariance) α(λX) = α(X) for λ ∈ (0,∞);
• (Fatou property) if |Xn| ≤ 1, Xn converge to X in probability, and α(Xn) ≥ z,

then α(X) ≥ z.

Let us remark that of the three performance measures described above (SR, RAROC, and
GLR) only the last one satisfies these axioms. However, GLR is not the best representative
of coherent indices; there exist indices with better properties that are described below.

The representation theorem provided in [7] states that a map α is a coherent ac-
ceptability index if and only if there exists a family (Dt)t≥0, where each Dt consists of
probability measures absolutely continuous with respect to P, such that Ds ⊆ Dt for s ≤ t
and

α(X) = sup
{
t ≥ 0 : inf

Q∈Dt

EQX ≥ 0
}
, (1.1)

where sup ∅ = ∞. This representation shows that coherent indices are closely linked to
coherent risk measures introduced by Artzner, Delbaen, Eber, and Heath [2], [3]. Namely,
α is a coherent index if and only if there exists a family (ρt)t≥0 of coherent risk measures
such that ρs ≤ ρt for s ≤ t and

α(X) = sup{t ≥ 0 : ρt(X) ≤ 0}.

The major disadvantage of coherent indices is that this class is very wide and at first
it is not clear which particular index should be chosen in applications. Indeed, the class
of coherent risks is already very wide, and an index is linked to a whole family of coherent
risks. An analytically convenient subclass of coherent indices is the class of Weighted

V@R acceptability indices (see [7; Subsect. 3.6]) denoted as AIW and defined as

α(X) = sup
{
t ≥ 0 :

∫

R

xd(Ψt(DX(x))) ≥ 0
}
, (1.2)

where DX is the distribution function of X and (Ψt)t≥0 is a family of concave distor-

tions increasing in t, i.e each Ψt is a concave increasing function [0, 1] → [0, 1] with
Ψt(0) = 0, Ψt(1) = 1 and Ψt(x) is increasing in t for any x ∈ [0, 1]. Each map
X 7→ −

∫
R
xd(Ψt(DX(x))) is a coherent risk measure from the Weighted V@R class known

also as spectral risk measures (see [1], [5], and [11; Sect. 4.6] for more details on this class).
However, the AIW class is still too wide. There are some economically desirable

properties that enable one to slightly narrow the class of reasonable indices, but this
reduction is actually negligible. The first basic problem we address is: To select a subclass

of AIW that is essentially narrower than AIW by imposing some mathematically desirable

condition.
The second problem under consideration also deals with the problem of the selection of

appropriate indices and is as follows. Assuming that market participants are maximizing
some coherent index α from the AIW class, one can recover by comparing the physical
measure (estimated from the historical data) and the risk-neutral measure (estimated
from option prices) the concave distortion Ψt∗ corresponding to t∗ = α(X∗), where X∗

is the portfolio of the representative agent; for details, see [8]. In other words, from the
data one might recover the form of Ψt for some particular t∗. Then one might try to
recover the family (Ψt)t≥0 by the function Ψt∗. Clearly, there exists a huge variety of such
families. The problem we want to address is: Does there exist a “canonical” family of

concave distortions (Ψt)t≥0 with a given Ψt∗?
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2. Goal of the paper. Let us make the following observation: if Ψ and Ψ̃ are
two concave distortions, then its composition Ψ ◦ Ψ̃ is again a concave distortion and it
dominates both Ψ and Ψ̃. A mathematically elegant property of an increasing family of
concave distortions (Ψt)t≥0 is the semigroup property

Ψs ◦ Ψt = Ψs+t, s, t ≥ 0.

The goal of the paper is to investigate families of concave distortions with the semi-
group property. We will call them concave distortion semigroups or simply distortion

semigroups (the word “distortion” will also be skipped at some places as we are not con-
sidering any other semigroups). For this class, the above two problems transform into the
following ones:

I. How can distortion semigroups be represented?

II. For which concave distortions Ψ does there exist a distortion semigroup (Ψt)t≥0

such that Ψ1 = Ψ?

3. Examples. Let us first give several examples showing that the class of distortion
semigroups includes some nice representatives.

It is easy to see that the family

Ψt(x) = (etx) ∧ 1, t ≥ 0, x ∈ [0, 1] (1.3)

belongs to this class. For X with a continuous distribution, we have

∫

R

xd(Ψt(DX(x))) = E(X | X ≤ qe−t(X)),

where qλ(X) is a λ-quantile of X. Hence, the corresponding AIW index has a nice
representation

α(X) = − ln(inf{λ ∈ (0, 1] : E(X | X ≤ qλ(X)) ≥ 0}).

This index coincides up to a monotone transformation with the CV@R index from [7].1

Another example of a distortion semigroup is

Ψt(x) = 1 − (1 − x)et

, t ≥ 0, x ∈ [0, 1]. (1.4)

If et is integer, then

∫

R

xd(Ψt(DX(x))) = E min{X1, . . . , Xet},

where X1, X2, . . . are independent copies of X. Thus, α(X) admits an informal interpre-
tation as the largest number t such that the expectation of the minimum of et independent
draws of X is positive. This index coincides up to a monotone transformation with the
AIMIN index from [7].

A further example is

Ψt(x) = xe−t

, t ≥ 0, x ∈ [0, 1]. (1.5)

1Note that if α is a coherent index and ϕ : R+ → R+ is a continuous strictly increasing function, then
ϕ ◦ α is again a coherent index, which we call a monotone transformation of α.

3



The corresponding index coincides up to a monotone transformation with the AIMAX

index from [7].

4. Results. The representation of distortion semigroups is provided by Theorem 2.1.
It states that (Ψt)t≥0 is a distortion semigroup if and only if there exists a concave function
G : (0, 1) → (0,∞) such that

Ψt(x) = inf
{
y ∈ [x, 1] :

∫ y

x

1

G(s)
ds = t

}
, t ≥ 0, x ∈ [0, 1].

The function G is uniquely determined by the family (Ψt)t≥0 via the relation

G(x) = lim
t↓0

Ψt(x) − x

t
, x ∈ (0, 1),

and G(0) = G(1) := 0. We call G the generator of the semigroup (Ψt)t≥0.
In order to compare different distortion semigroups and to identify which ones are

better, we investigate in Section 3 how some economically and mathematically desirable
properties are expressed in terms of generators. As an example, one of such properties is
the strict quasi-concavity, which guarantees the uniqueness of a solution of optimization
problems based on the corresponding index.

Next we address the second problem mentioned above. Theorem 4.1 states that for a
concave distortion Ψ there exists at most one distortion semigroup (Ψt)t≥0 with Ψ1 = Ψ
(under the additional assumption on the left derivative Ψ′

−(1) > 0, which is in fact
economically reasonable). It also provides an approximation procedure for finding its
generator. However, such a semigroup does not exist for all the concave distortions Ψ as
shown by Example 4.2. The problem of describing the class of concave distortions, for
which there exists such a semigroup, remains open.

5. Structure of the paper. Section 2 provides the representation theorem for the
distortion semigroups. Section 3 discusses how some mathematically and economically
desirable properties of a semigroup are expressed via its generator. Section 4 deals with the
problem of finding a semigroup passing through a given concave distortion. In Section 5,
we discuss some operations on semigroups. Section 6 concludes.

2 Representation of Distortion Semigroups

In the theorem below we exclude the trivial cases Ψt(x) = x, t ≥ 0, x ∈ [0, 1] and
Ψt(x) = 1, t ≥ 0, x ∈ (0, 1].

Theorem 2.1. A family (Ψt)t≥0 is a concave distortion semigroup if and only if there

exists a concave function G : (0, 1) → (0,∞) such that

Ψt(x) = inf
{
y ∈ [x, 1] :

∫ y

x

1

G(s)
ds = t

}
, t ≥ 0, x ∈ (0, 1], (2.1)

where inf ∅ = 1. Moreover, the function G is uniquely determined by the family (Ψt)t≥0

via the relation

G(x) = lim
t↓0

Ψt(x) − x

t
, x ∈ (0, 1). (2.2)
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Proof. Let us prove the “if” part. It is obvious that each Ψt is increasing, continuous,
and Ψt(1) = 1. The semigroup property Ψs ◦ Ψt = Ψs+t is clear.

Fix t > 0 and let us check that Ψt is concave. We can assume that G is strictly
concave (otherwise, we approximate G by strictly concave functions). Suppose that Ψt is
not concave. Denote a = sup{x ∈ [0, 1] : Ψt(x) < 1}. Then there exist 0 < x1 < x2 < a
and λ ∈ (0, 1) such that

Ψt(λx1 + (1 − λ)x2) < λΨt(x1) + (1 − λ)Ψt(x2).

The relation

lim
s↓0

Ψs(x) − x

s
= G(x),

together with the strict concavity of G, guarantees that

Ψs(λx1 + (1 − λ)x2) > λΨs(x1) + (1 − λ)Ψs(x2)

for all sufficiently small s. This shows that the value

t0 = inf{s ≥ 0 : Ψs(λx1 + (1 − λ)x2) ≤ λΨs(x1) + (1 − λ)Ψs(x2)}

satisfies 0 < t0 < t. Due to the continuity of Ψs(x) in s, we have

Ψt0(λx1 + (1 − λ)x2) = λΨt0 + (1 − λ)Ψt0(x2).

The relations x1 < x2 < a imply that Ψt(x1) < Ψt(x2) < 1, which, in turn, implies that
Ψt0(x1) < Ψt0(x2) < 1. Then it is clear that

∂s|s=t0[Ψs(λx1 + (1 − λ)x2) − λΨs(x1) − (1 − λ)Ψs(x2)]

= G(Ψt0(λx1 + (1 − λ)x2)) − λG(Ψt0(x1)) − (1 − λ)G(Ψt0(x2))

= G(λΨt0(x1) + (1 − λ)Ψt0(x2)) − λG(Ψt0(x1)) − (1 − λ)G(Ψt0(x2)) > 0,

where the inequality follows from the strict concavity of G. But then for sufficiently small
ε > 0 we have

Ψt0−ε(λx1 + (1 − λ)x2) < λΨt0−ε + (1 − λ)Ψt0−ε(x2),

which contradicts the choice of t0.
Let us prove the “only if” part. First, we check that limt↓0 Ψt(x) = x for any x ∈ [0, 1].

Suppose that there exists x0, for which this is wrong. Obviously, Ψt(x) is increasing in t,
so that there exists a > x0 such that Ψt(x0) > a for any t > 0. Due to the concavity of ψt,
we see that Ψt ≥ Ψ for any t > 0, where Ψ is the piecewise linear function with Ψ(0) = 0,
Ψ(x0) = a, and Ψ(1) = 1. Then Ψt = Ψn

t/n ≥ Ψn for any n ∈ N, where Ψn = Ψ ◦ · · · ◦Ψ is

the n-th composition of Ψ with itself. It is clear that Ψn(x) → 1 for any x ∈ (0, 1], which
brings us to a contradiction.

Let us now prove that, for any x ∈ (0, 1), there exists limt↓0 t
−1[Ψt(x) − x]. Fix

x ∈ (0, 1) and ε > 0. It follows from the concavity of Ψt that

1 − y

1 − x
(Ψt(y) − y) ≤ Ψt(y) − y ≤

y

x
(Ψt(x) − x), y ∈ [x, 1], t ≥ 0.

Combining this with the property limt↓0 Ψt(x) = x, we see that there exists δ > 0 such
that

(1 − ε)(Ψt(x) − x) ≤ Ψt(y) − y ≤ (1 + ε)(Ψt(x) − x), y ∈ [x,Ψt(x)], t ∈ (0, δ).
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Then, for any n ∈ N,

(1 − ε)
(
Ψ t

n

(x) − x
)
≤ Ψ t

n

(y) − y ≤ (1 + ε)
(
Ψ t

n

(x) − x
)
, y ∈ [x,Ψt(x)], t ∈ (0, δ).

Consequently, for any m ≤ n ∈ N,

(1 − ε)
(
Ψ t

n

(x) − x
)
≤ Ψm

n
t(x) − Ψm−1

n
t(x) ≤ (1 + ε)

(
Ψ t

n

(x) − x
)
, t ∈ (0, δ).

Summing up these inequalities, we get

(1 + ε)−1 Ψt(x) − x

t
≤

Ψt/n(x) − x

t/n
≤ (1 − ε)−1 Ψt(x) − x

t
, t ∈ (0, δ),

which implies that

(1 + ε)−1 Ψt(x) − x

t
≤ lim inf

n→∞

Ψt/n(x) − x

t/n

≤ lim sup
n→∞

Ψt/n(x) − x

t/n
≤ (1 − ε)−1 Ψt(x) − x

t
, t ∈ (0, δ).

As the function Ψt(x) is increasing in t, we get

(1 + ε)−1 Ψt(x) − x

t
≤ lim inf

s↓0

Ψs(x) − x

s

≤ lim sup
s↓0

Ψs(x) − x

s
≤ (1 − ε)−1 Ψt(x) − x

t
, t ∈ (0, δ).

In particular, we see that the ratio s−1[Ψs(x) − x] is bounded by some constant for all s
from some neighborhood of zero. As ε is arbitrary, we get

lim inf
s↓0

Ψs(x) − x

s
= lim sup

s↓0

Ψs(x) − x

s
= lim

s↓0

Ψs(x) − x

s
.

The function

G(x) = lim
t↓0

Ψt(x) − x

t
, x ∈ (0, 1)

is positive and concave. It follows from the semigroup property of (Ψt)t≥0 that

lim
ε↓0

Ψt+ε(x) − Ψt(x)

ε
= G(Ψt(x)), t ≥ 0, x ∈ (0, 1).

Furthermore, the convergence s−1[Ψs(x) − x] to G(x) is uniform on any compact subin-
terval of (0, 1) due to the concavity of the functions s−1[Ψs(x) − x]. Therefore,

lim
ε↓0

Ψt−ε(x) − Ψt(x)

ε
= lim

ε↓0

Ψt−ε(x) − Ψε(Ψt−ε(x))

ε
= −G(Ψt(x))

for any t > 0 and any x > 0 such that Ψt(x) < 1. Thus, ∂tΨt(x) = G(Ψt(x)) for any
t > 0 and any x > 0 such that Ψt(x) < 1. As the function G(Ψt(x)) is continuous in t for
x > 0 such that Ψt(x) < 1, we get

Ψt(x) = x +

∫ t

0

G(Ψs(x))ds, t > 0, x > 0, Ψt(x) < 1.
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Therefore,

∫ Ψt(x)

x

1

G(s)
ds =

∫ t

0

1

G(Ψs(x))
dΨs(x) =

∫ t

0

G(Ψs(x))

G(Ψs(x))
ds = t, t > 0, x > 0, Ψt(x) < 1.

This proves (2.1) for t > 0 and x > 0 such that Ψt(x) < 1.
The semigroup property obviously implies that Ψ0(x) = x, so that (2.1) is trivially

satisfied for t = 0. As both sides of (2.1) are increasing in x and take values in [0, 1], we
see that this equality is satisfied for all x ∈ (0, 1]. 2

The next lemma provides another representation of (Ψt)t≥0 in terms of G. It will be
employed in Section 5. We denote by I the identity function I(x) = x and denote by F n

the n-th composition of F with itself, i.e. F ◦ · · · ◦ F .

Lemma 2.2. Let (Ψt)t≥0 be a concave distortion with a generator G. Let (Gn) be a

sequence of concave functions (0, 1) → (0,∞) converging to G pointwise. Then

lim
n→∞

(
I +

t

n
Gn

)n

(x) = Ψt(x), t ≥ 0, x ∈ (0, 1], (2.3)

where Gn is extended to R by letting Gn = 0 outside (0, 1).

Proof. Without loss of generality, t = 1. Fix x > 0 such that Ψ1(x) < 1 and ε > 0
such that Ψ1(x) + ε < 1. We can find δ > 0, for which

Ψ1(x) − ε ≤ Ψ1−δ(x) ≤ Ψ1+δ(x) ≤ Ψ1(x) + ε < 1. (2.4)

Due to the concavity of Gn, the convergence Gn → G is uniform on the interval
[x,Ψ1+δ(x)]. The same is true for the convergence n

(
Ψ 1−δ

n

− I
)

→ (1 − δ)G and

n
(
Ψ 1+δ

n

− I
)
→ (1 + δ)G. Thus, there exists N ∈ N such that

n
(
Ψ 1−δ

n

(y) − y
)
≤ Gn(y) ≤ n

(
Ψ 1+δ

n

(y) − y
)
, y ∈ [x,Ψ1+δ(x)], n ≥ N.

This means that

Ψ 1−δ

n

(y) ≤ y +
Gn(y)

n
≤ Ψ 1+δ

n

(y), y ∈ [x,Ψ1+δ(x)], n ≥ N.

It is easy to see by the induction in k that

x ≤ Ψ(1−δ) k

n

(x) ≤

(
I +

Gn

n

)k

(x) ≤ Ψ(1+δ) k

n

(x) ≤ Ψ1+δ(x) n ≥ N, k = 1, . . . , n.

Combining this inequality for k = n with (2.4), we get (2.3) for x > 0 such that Ψ1(x) < 1.
Furthermore, it is easy to see that both lim supn

(
I + Gn

n

)n
and lim infn

(
I + Gn

n

)n
are

increasing functions taking values in [0, 1]. As Ψ1(x) is also increasing and takes values
in [0, 1], we conclude that (2.3) is true for any x ∈ (0, 1]. 2

To conclude this section, let us consider four performance measures:

• Sharpe ratio SR(X) = EX/σ(X), where σ is the standard deviation;
• Risk-Adjusted Return on Capital RAROC(X) = EX/V@R(X), where V@R is the

Value at Risk;
• Gain-Loss Ratio GLR(X) = EX/EX−, where X− = max{−X, 0};
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• Coherent Risk-Adjusted Return on Capital CRAROC(X) = EX/ρ(X), where ρ is
a coherent risk measure.

As shown in [7], SR and RAROC are not coherent indices. GLR is a coherent index, but
it does not belong to the AIW class. CRAROC is a coherent index. If ρ belongs to the
Weighted V@R class, i.e.

ρ(X) = −

∫

R

xd(Ψ(DX(x)))

with some concave distortion Ψ, then CRAROC is an AIW index corresponding to

Ψt(x) =
1

1 + t
x+

t

1 + t
Ψ(x), t ≥ 0, x ∈ [0, 1].

However, this is not a distortion semigroup. Indeed, any distortion semigroup (except for
the trivial one Ψt(x) = x) has the property limt→∞ Ψt(x) = 1 for x ∈ (0, 1]; the family
given above does not have this property.

Thus, neither of the above performance measures is an AIW index corresponding to a
distortion semigroup. Nevertheless, nice representatives of such indices do exist and some
of them are given by (1.3)–(1.5). The aim of the next section is to figure out which of
those indices have better properties.

3 Properties of Distortion Semigroups

3.1 Mathematical Properties

Let (Ψt)t≥0 be a semigroup with generator G, and define G(0) = G(1) := 0. It is obvious
that

Ψt(0+) = 0 ⇐⇒

∫ ε

0

1

G(s)
ds = ∞; (3.1)

we do not specify the values of t > 0 and ε ∈ (0, 1) here since clearly the above properties
do not depend on the choice of t and ε. Furthermore,

Ψt < 1 on [0, 1) ⇐⇒

∫ 1

1−ε

1

G(s)
ds = ∞. (3.2)

The theorem below establishes some finer properties of (Ψt)t≥0 in terms of generators. By
f ′

+ (∂+
x f) and f ′

− (∂−x f) we denote the right and the left (partial) derivatives (in x) of a
function f , respectively.

Theorem 3.1. (i) For any t > 0, the function Ψt is strictly concave on the set

{Ψt < 1} if and only if G is strictly concave.

(ii) Assume that
∫ ε

0
1

G(s)
ds = ∞. Then ∂+

x Ψt(0) = eG′

+(0)t for any t ≥ 0.

(iii) Assume that G(1−) = 0. Then ∂−
x Ψt(1) = eG′

−
(1)t for any t ≥ 0.

Proof. (i) The “if” part was verified in the proof of Theorem 2.1. Let us prove the
“only if” part. Suppose that G is not strictly concave. Then there exists an interval
[a, b] ⊆ (0, 1) such that G(x) = α + βx on [a, b]. The direct application of (2.1) shows
that, for x ∈ [a, b] such that Ψt(x) also belongs to [a, b], we have

Ψt(x) = β−1(α+ βx)eβt − β−1α.
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In view of the continuity of Ψt(x) in t, there exists a sufficiently small t > 0 such that Ψt

is linear on some interval. This is a contradiction.
(ii) Consider first the case, where G′

+(0) < ∞. Fix ε > 0 and t > 0. The equality
∫ e

G
′

+(0)t
x

x
1

G′

+(0)s
ds = t guarantees that

∫ (1−ε)e
G
′

+(0)t
x

x

1

G(s)
ds < t <

∫ (1+ε)e
G
′

+(0)t
x

x

1

G(s)
ds

for all sufficiently small x (note that G(0+) = 0). Then

(1 − ε)eG′

+(0)tx < Ψt(x) < (1 + ε)eG′

+(0)tx,

which implies that ∂+
x Ψt(0) = eG′

+(0)t.
Consider now the case G′

+(0) = ∞. Take concave functions Gn that increase to G.
Then automatically G′

n+(0) → ∞. The functions Ψt,n defined via (2.1) with G replaced
by Gn increase to Ψt. The condition

∫ ε

0
1

G(s)
ds = ∞ ensures that Ψt(0+) = 0, and hence,

Ψt,n(0+) = 0. Thus, ∂+
x Ψt(0) ≥ ∂+

x Ψt,n(0) for any n, and the latter quantities tend to
infinity as proved above.

(iii) The case, where
∫ 1

1−ε
1

G(s)
ds = ∞, is treated similarly as (ii). If

∫ 1

1−ε
1

G(s)
ds <∞,

then G′
−(1) = −∞ and Ψt = 1 in some neighborhood of 1, so that ∂−

x Ψt(1) = 0 =

eG′

−
(1)t. 2

3.2 Economical Properties

Consider a coherent index α defined on the space L0 of all random variables via (1.2),
where

∫
R
xd(Ψt(DX(x))) is understood as

∫
R
x+d(Ψt(DX(x))) −

∫
R
x−d(Ψt(DX(x))) with

the convention ∞−∞ = −∞ (recall that x+ = max{x, 0} and x− = max{−x, 0}). This
way of extending indices to L0 is proposed by the corresponding extension of coherent risks
to L0, which turns out to be rather convenient, in particular, in application to pricing;
see [6]. It follows from [5; Th. 3.3, 46] that

∫

R

xd(Ψt(DX(x))) = inf
Q∈Dt

EQX, X ∈ L0, (3.3)

where the expectation EQX is understood as EQX
+ − EQX

− (again with the convention
∞−∞ = −∞) and

Dt = {Q : E(dQ/dP − x)+ ≤ Φt(x) ∀x ∈ R+}, (3.4)

Φt(x) = sup
y∈[0,1]

[Ψt(y) − xy], x ∈ R+. (3.5)

This provides the representation of α in the form (1.1).
In what follows, we will consider the space

L1(α) =
{
X ∈ L0 :

∫

R

xd(Ψt(DX(x))) > −∞ and

∫

R

xd(Ψt(D−X(x))) > −∞ ∀t ≥ 0
}
.

It is easy to see from (3.3) that this is a linear space. If ∂+
x Ψt(0) < ∞ for any t ≥ 0 (as

is the case for examples (1.3), (1.4)), then L1(α) = L1. In general, we always have the
inclusions L0 ⊆ L1(α) ⊆ L1.

1. Basic properties. First of all, let us consider four economically desirable proper-
ties of coherent indices discussed in [7] (in the conditions below, X, Y ∈ L1(α)):

9



• (Law invariance) If X and Y have the same law, then α(X) = α(Y );
• (Consistency with second-order stochastic dominance) If Y second order stochasti-

cally dominates X (i.e. EU(X) ≤ EU(Y ) for all increasing concave functions U),
then α(X) ≤ α(Y );

• (Arbitrage consistency) X ≥ 0 if and only if α(X) = ∞;
• (Expectation consistency) if EX < 0, then α(X) = 0; if EX > 0, then α(X) > 0.

Obviously, any AIW index is law invariant. As shown in [7; Sect. 3], it is also second-
order monotone. Arbitrage consistency for an AIW index defined by a family (Ψt)t≥0

is equivalent to the property limt→∞ Ψt(x) = 1 for x ∈ (0, 1]; this is satisfied by any
distortion semigroup, except for the trivial one Ψt(x) = x. Finally, the expectation
consistency for an AIW index is equivalent to the property Ψ0(x) = x, which is satisfied
by any distortion semigroup, except for the trivial one Ψt(x) = 1.

To sum up, the above four properties are automatically satisfied by distortion semi-
groups. Below we investigate finer economic properties, which are satisfied only by some
semigroups. We fix a semigroup (Ψt)t≥0 with a generator G and define α via (1.2).

2. Positivity on unbounded random variables. The proposition below shows
that the condition

∫ ε

0
1

G(s)
ds = ∞ is extremely desirable. Namely, if it is violated, then

α(X) = 0 for any X unbounded below, which is an unacceptable property because most of
the distributions employed in financial modelling (e.g. the Gaussian one) have unbounded
support.

Proposition 3.2. Suppose that the probability space is atomless. The following con-

ditions are equivalent:

(a) there exists X with essinfω X(ω) = −∞ such that α(X) > 0;
(b) for any X ∈ L1(α) and any t ≥ 0, argminQ∈Dt

EQX 6= ∅;
(c) for any t ≥ 0, Ψt(0+) = 0;
(d)

∫ ε

0
1

G(s)
ds = ∞.

Proof. (a)⇒(c) If Ψt(0+) > 0 for some t, then the same is true for any t. For any
X unbounded below, we then have

∫
R
x−d(Ψt(DX(x))) = ∞, t > 0. According to our

agreement,
∫

R
xd(Ψt(DX(x))) = −∞, t > 0, which means that α(X) = 0.

(c)⇒(a) Fix t > 0. Clearly, we can find X unbounded below and such that∫
R
xd(Ψt(DX(x))) ≥ 0. Then α(X) ≥ t.
(c)⇒(b) If Ψt(0+) = 0, then the function Φt given by (3.5) satisfies Φt(∞) = 0, which

means that the set Dt given by (3.4) is uniformly integrable. Now, the desired statement
follows from [6; Prop. 2.9].

(b)⇒(c) Suppose that Ψt(0+) > 0. It is easy to see that then Dt = L0+(1−Ψt(0+))D̃t

(we identify here probability measures with their Radon-Nikodym derivatives with respect

to P), where D̃t is given by (3.4)–(3.5) with Ψt replaced by Ψ̃t = (1 − Ψt(0+))−1Ψt.
Let X be uniformly distributed on [0, 1]. The previous implication guarantees that
argmin

Q∈D̃t
EQX 6= ∅. However, argminZ∈L0 EZX = ∅. As a result, argminQ∈Dt

EQX = ∅.
(c)⇔(d) This is equivalence (3.1). 2

3. Strict quasi-concavity. The next proposition shows that the strict concavity
ofG, together with the condition

∫ 1

1−ε
1

G(s)
ds = ∞, is responsible for the following property

of α, which might be termed the strict quasi-concavity: if α(X) = α(Y ) and X, Y are
not comonotone, then α(X + Y ) > α(X). Recall that random variables X, Y are called
comonotone if there exists a random variable Z and increasing functions f, g such that
X = f(Z), Y = g(Z).
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Proposition 3.3. Suppose that the probability space is atomless. The following con-

ditions are equivalent:

(a) for any X, Y ∈ L1(α) that are not comonotone and are such that 0 < α(X) =
α(Y ) <∞, we have α(X + Y ) > α(X).

(b) for any t > 0, Ψt is strictly concave;

(c) G is strictly concave and
∫ 1

1−ε
1

G(s)
ds = ∞.

Proof. (a)⇒(b) Suppose that, for some t > 0, Ψt is not strictly concave. Then there
exists an interval [a, b], on which Ψt is affine. As the probability space is atomless, it
supports a random variable X with a uniform distribution on [0, 1]. The random variable

Y =

{
X on {X < a} ∪ {X > b},

a+ b−X on {a ≤ X ≤ b}

also has the uniform distribution, so that

∫

R

xd(Ψt(DX(x))) =

∫

R

xd(Ψt(DY (x))) =

∫ 1

0

xdΨt(x).

Then
∫ 1

0

xd
(
Ψt

(
DX+Y

2
(x)

))
=

∫ a

0

xdΨt(x) +
a + b

2
(Ψt(b) − Ψt(a)) +

∫ 1

b

xdΨt(x)

=

∫ a

0

xdΨt(x) +

∫ b

a

a+ b

2
dΨt(x) +

∫ 1

b

xdΨt(x)

=

∫ 1

0

xdΨt(x),

where the third equality follows from the affinity of Ψt on [a, b]. Consider now the random

variables X̃ = X −
∫ 1

0
xdΨt(x) and Ỹ = Y −

∫ 1

0
xdΨt(x). As Ψt is strictly increasing in t,

we have ∫

R

xd(Ψt+ε(DX̃(x))) < 0,

∫

R

xd(Ψt+ε(DỸ (x))) < 0

for any ε > 0, so that α(X̃) = α(Ỹ ) = t. Furthermore,

∫

R

xd
(
Ψt

(
D X̃+Ỹ

2

(x)
))

=

∫

R

xd
(
Ψt

(
DX+Y

2
(x)

))
−

∫ 1

0

xdΨt(x) = 0,

and hence, α(X̃ + Ỹ ) = α
(

X̃+Ỹ
2

)
= t. Clearly, X̃ and Ỹ are not comonotone, so we have

got a contradiction with (a).
(b)⇒(a) Let t0 = α(X) = α(Y ). Integration by parts yields the representation

∫

R

xd(Ψt(DX(x))) = −

∫ 0

−∞

Ψt(DX(x))dx +

∫ ∞

0

(1 − Ψt(DX(x)))dx.

If X is bounded, we immediately see that this function is continuous in t. This means
the continuity of the function t 7→ infQ∈Dt

EQX. Approximating now X ∈ L1(α) by its
truncations, we see that the same continuity property holds true for such X. Hence,

∫

R

xd(Ψt0(DX(x))) =

∫

R

xd(Ψt0(DY (x))) = 0.

11



It follows from [5; Th. 5.1] that
∫

R
xd(Ψt0(DX+Y (x))) > 0. Employing the continuity of

the map t 7→
∫

R
xd(Ψt(DX+Y (x))), we get that α(X + Y ) > t0.

(b)⇔(c) This equivalence follows from Theorem 3.1 (i) combined with (3.2). 2

As an application of the previous proposition, consider the following optimization
problem. Let S0 = (S1

0 , . . . , S
d
0) ∈ R

d denote the initial prices of d > 1 assets and
S1 = (S1

1 , . . . , S
d
1) ∈ (L1(α))d their terminal discounted prices. Consider the portfolio

optimization problem

α(〈h, S1 − S0〉) −→ max, h ∈ R
d \ {0}. (3.6)

Recall that the model is arbitrage-free if there exists no h ∈ R
d such that P(〈h, S1−S0〉 ≥

0) = 1 and P(〈h, S1 − S0〉 > 0) > 0.

Corollary 3.4. Suppose that ES1 6= S0 and there is no arbitrage. Assume that

S1
1 , . . . , S

d
1 have a joint density. Let (Ψt)t≥0 satisfy the equivalent conditions of Propo-

sition 3.3. Then the optimal value in (3.6) is strictly positive and finite, there exists a

solution of (3.6), and it is unique up to multiplication by a positive constant.

Proof. Denote by a∗ the optimal value in (3.6). Clearly, it remains the same if the
optimization is performed over the unit sphere S. Choose hn ∈ S with α(〈hn, S1 −
S0〉) → a∗. Passing on to a subsequence, we can assume that hn converge to h∗ ∈ S.
As explained in the preceding proof the map t 7→

∫
R
xd(Ψt(DX(x))) is continuous and is

strictly decreasing for any non-degenerate X ∈ L1(α). Clearly,

∫

R

xd(Ψt(DXn
(x))) −−−→

n→∞

∫

R

xd(Ψt(DX∗
(x))), t ≥ 0,

where Xn = 〈hn, S1 − S0〉, X∗ = 〈h∗, S1 − S0〉. Hence, α(Xn) → α(X∗), so that X∗ is
optimal for (3.6).

As S1
1 , . . . , S

d
1 has a joint density, X∗ is non-degenerate. Due to the absence of arbi-

trage, P(X∗ < 0) > 0. Obviously, Ψt(x) −−−→
t→∞

1 for any x ∈ (0, 1]. Hence,

lim
t→∞

∫

R

xd(Ψt(DX∗
(x))) < 0,

which implies that α(X∗) < ∞. As
∫

R
xd(Ψ0(DX(x))) = EX, we see that α(X) = 0 for

any X ∈ L1(α) with EX ≤ 0; α(X) > 0 for any X ∈ L1(α) with EX > 0. In view of the
condition E(S1 − S0) 6= 0, we get α(X∗) > 0.

Suppose now that there exists h′ ∈ S that is not a positive multiple of h∗ such that
α(X ′) = a∗, where X ′ = 〈h′, S1 − S0〉. Then the vector (X∗, X

′) has a joint density, so
that X∗, X

′ are not comonotone. According to Proposition 3.3, α(X∗ + X ′) > a∗, which
is a contradiction. 2

4. Left tail of extreme measure densities. Let (Ψt)t≥0 be a semigroup satisfying
the equivalent conditions of Proposition 3.2. As shown by that proposition, for any
X ∈ L1(α) and any t ≥ 0, the set of extreme measures argminQ∈Dt

EQX is non-empty.
If X has a continuous distribution, then this set consists of a unique measure Q∗

t (X)
given by dQ∗

t (X)/dP = (∂xΨt)(DX(X)) (see [5; Sect. 6]; it is not important whether we
take the left or right partial derivative here as the random variable DX(X) is uniformly
distributed). This measure has certain economic similarities (see [7; Sect. 2]) with the
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state-price density based on the classical expected utility, i.e. with the measure Q given by
dQ/dP = cU ′(W ), where U : R → R is a concave increasing function, W is the terminal
wealth of a position, and c is the normalizing constant. A desirable property of the
classical utility U is that U ′(−∞) = ∞, which means that cU ′(W ) is unbounded (we
assume here that W is unbounded below). By analogy, a desirable property of extreme
measures would be the unboundedness of (∂xΨt)(DX(X)), which, in turn, is equivalent
to the property ∂+

x Ψt(0) = ∞.
The unboundedness of (∂xΨt)(DX(X)) means that large losses are exaggerated up to

infinity. As argued above, this is an economically desirable feature. However, it bears the
potential danger that in applications the value of the index might depend essentially on the
tail of the distribution, which, in turn, is unstable under changes of the data set, a change
of the model, etc. But let us remark in this connection that Eberlein and Madan [10]
performed some data tests for four coherent indices from [7] for the performance of hedge
funds. The four indices were AIMIN, AIMAX, AIMAXMIN, and AIMINMAX. For the
first of these indices, the extreme measure densities (∂xΨt)(DX(X)) are bounded; for the
other three indices, these densities are unbounded. The tests showed high correlation
between the results for the last three indices, while the results for AIMIN were relatively
uncorrelated with those three indices. This suggests the superiority of coherent indices
with unbounded densities of extreme measures.

The following statement is a direct consequence of Theorem 3.1.

Corollary 3.5. Suppose that the probability space is atomless and the equivalent con-

ditions of Proposition 3.2 are satisfied. The following conditions are equivalent:

(a) for any X ∈ L1(α) with a continuous distribution and any t > 0, the density

dQ∗
t (X)/dP is unbounded;

(b) for any t > 0, ∂+
x Ψt(0) = ∞;

(c) G′
+(0) = ∞.

5. Right tail of extreme measure densities. Most well-known utility functions
(e.g. CARA, HARA, etc.) satisfy the property U ′(∞) = 0. This suggests that it is
desirable that the classical state-price densities cU ′(W ) should have its essential infimum
equal to zero, and the same might seem to be desirable for the extreme measure densities.
However, we do not see strong economic motivation for this property. Moreover, there
exists an economic argument against this property. Namely, some recent investigations
(see Carr, Geman, Madan, Yor [4]) were aimed at finding cU ′(W ) assuming that W is a
function of an index like S&P 500: W = f(I). These investigations suggest that cU ′(f(I))
has a U-shaped structure as a function of I and is bounded away from zero.

The following statement is a direct consequence of Theorem 3.1.

Corollary 3.6. Suppose that the probability space is atomless and the equivalent con-

ditions of Proposition 3.2 are satisfied. The following conditions are equivalent:

(a) for any X ∈ L1(α) with a continuous distribution and any t > 0, the density

dQ∗
t (X)/dP is bounded away from zero;

(b) for any t > 0, ∂−x Ψt(1) > 0;

(c)
∫ 1

1−ε
1

G(s)
ds = ∞ and G′

−(1) > −∞.
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6. Examples. We have considered four economically meaningful properties of dis-
tortion semigroups:

I. for any t ≥ 0, Ψt(0+) = 0;
II. for any t > 0, Ψt is strictly concave;

III. for any t > 0, ∂+
x Ψt(0) = ∞;

IV. for any t ≥ 0, ∂−x Ψt(1) > 0.

The first property is extremely important both from the mathematical and from the
economical perspectives. The second one is desirable mathematically. The third property
is economically reasonable. The relevance of the fourth one is questionable.

The table below shows which of those properties are satisfied for semigroups (1.3)–
(1.5). The table suggests that semigroup (1.5), corresponding to the transformed AIMAX,
exhibits the best properties.

I II III IV

(1.3) + − − −

(1.4) + + − −

(1.5) + + + +

Table 1. Properties I–IV for semigroups (1.3)–(1.5)

4 Logarithm of a Concave Distortion

Let Ψ be a concave distortion. In this section we will consider the problem of the existence
and the uniqueness of a distortion semigroup (Ψt)t≥0 such that Ψ1 = Ψ. The generator
of such a semigroup might be called the logarithm of Ψ.

The problem of recovering the generator by knowing the whole semigroup is trivial as
the generator is given by (2.2). In contrast, the problem of recovering the generator by
knowing only Ψ1 is not trivial, and we have only very partial results in this direction.2

The next theorem states that there exists at most one distortion semigroup (Ψt)t≥0 with
Ψ1 = Ψ, under the additional assumption Ψ′

−(1) > 0. This condition is linked to the
behavior of the right tail of extreme measure densities as discussed in the previous section.

Theorem 4.1. Let Ψ be a concave distortion such that Ψ′
−(1) > 0. Then there exists

at most one concave distortion semigroup (Ψt)t≥0 with Ψ1 = Ψ. If it exists, then its

generator is given by

G(x) = lim
n→∞

ln Ψ′
−(1)(Ψn(x) − 1)

Ψ′(x) . . .Ψ′(Ψn−1(x))
, x ∈ (0, 1), (4.1)

where Ψn = Ψ ◦ · · · ◦ Ψ is the n-th composition of Ψ with itself.

2There exists a slight analogy between our situation and the problem of recovering the diffusion
coefficient σ(x) of a one-dimensional diffusion dXt = σ(Xt)dBt, X0 = 0 by the marginal distributions
of X . If for any t > 0 we are given the density pt(x) of Xt, then there exists a simple formula for σ; see
Dupire [9]. However, if we are given only the density p1(x), then the problem of the existence and the
uniqueness of σ is very hard and is open, to the best of our knowledge. Let us mention in this connection
the paper by Israel, Rosenthal, and Wei [12], where the generator of a Markov chain with discrete state
space is found by the knowledge of its time-1 transition matrix.
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Proof. Let (Ψt)t≥0 be a distortion semigroup with Ψ1 = Ψ. Let G be its generator.

The condition Ψ′
−(1) > 0 ensures that Ψ < 1 on [0, 1), which means that

∫ 1

1−ε
1

G(s)
ds = ∞.

Hence,
∫ Ψ(x)

x
1

G(s)
ds = 1 for any x ∈ (0, 1). Differentiating both sides in x, we get

1

G(x)
=

Ψ′(x)

G(Ψ(x))
, x ∈ (0, 1).

Iterating this equality, we get

G(x) =
G(Ψ(x))

Ψ′(x)
=

G(Ψ2(x))

Ψ′(x)Ψ′(Ψ(x))
= · · · =

G(Ψn(x))

Ψ′(x) . . .Ψ′(Ψn−1(x))
, x ∈ (0, 1), n ∈ N.

Theorem 3.1 (iii) implies that G′
−(1) is finite and is equal to ln Ψ′

−(1). Clearly, Ψn(x) → 1
and Ψn(x) < 1 for x ∈ (0, 1). Therefore,

lim
n→∞

G(Ψn(x))

Ψn(x) − 1
= G′

−(1) = ln Ψ′
−(1), x ∈ (0, 1).

This proves (4.1), from which the uniqueness of G, and thus, the uniqueness of (Ψt)t≥0 is
obvious. 2

The next example shows that a distortion semigroup (Ψt)t≥0 with Ψ1 = Ψ might not
exist in some cases.

Example 4.2. Take 0 < a < b < 1 and consider a concave piecewise linear function Ψ
with Ψ(0+) = 0, Ψ(a) = b, Ψ(1) = 1 (note that Ψ′

−(1) > 0, so that it satisfies the
condition of the previous theorem). Then Ψ′ equals b

a
on (0, a) and is equal to 1−b

1−a
on

(a, 1). Thus, Ψ′(x) suffers a decrease in (1−a)b
(1−b)a

> 1 times at the point a. For any n ≥ 2,

Ψn(a) > a, so that Ψ′(Ψn(x)) is continuous at the point a. The function Ψn(x) − 1 is
continuous everywhere. As a result, for any n ∈ N, the function

Gn(x) =
ln Ψ′

−(1)(Ψn(x) − 1)

Ψ′(x) . . .Ψ′(Ψn−1(x))
, x ∈ (0, 1) (4.2)

suffers a jump in (1−a)b
(1−b)a

> 1 times at the point a. Hence, the same should be true for G

given by (4.1). But this is impossible as G should be concave.
In this example, the non-existence of (Ψt)t≥0 is brought by the discontinuity of Ψ′.

However, one can modify this example by taking b close enough to 1 and by smoothing Ψ
in some small neighborhood U of a. Then Ψ′(x) would suffer a decrease in (1−a)b

(1−b)a
> 1

times over U . At the same time the functions Ψ′(Ψn(x)) with n ≥ 2 are constant in U ,
while Ψn(x)−1 = cn(Ψ(x)−1) in U with some constant cn. If U is small enough, then the
relative change of the latter function over U does not exceed 2, so that the relative change
of each Gn given by (4.2) over U suffers a decrease in at least (1−a)b

2(1−b)a
> 1 times over U .

The appropriate choice of a, b, and U would then contradict the concavity of G. 2

5 Operations on Distortion Semigroups

The class of generators of distortion semigroups, i.e. concave functions (0, 1) → (0, 1) is
closed under several operations (e.g., the minimum of two generators is again a genera-
tor). It is interesting to see what the corresponding operations are on the corresponding
semigroups or coherent indices.
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1. Scaling. Let G be a generator, (Ψt)t≥0 be the corresponding semigroup given
by (2.1), and α be the corresponding index given by (1.2). Let λ be a positive number.

Then G̃ = λG is a again a generator. The corresponding semigroup has the form Ψ̃t = Ψλt

and the corresponding index is α̃(X) = λ−1α(X).
Let us remark that if α is an arbitrary coherent index and ϕ : R+ → R+ is a strictly

increasing continuous function, then α̃ = ϕ ◦ α is again a coherent index. However, if
both α and α̃ are semigroup indices, i.e. they correspond to distortion semigroups, then
ϕ should be linear (indeed, the corresponding families of concave distortions should be

related by Ψ̃t = Ψϕ−1(t), and then the generator of (Ψ̃t)t≥0 should be a multiple of the
generator of (Ψt)t≥0).

2. Duality. Let G be a generator and (Ψt)t≥0 be the corresponding semigroup. It

is easy to see that then the semigroup corresponding to G̃(x) = G(1 − x) has the form

Ψ̃t(x) = 1 − Ψ−1
t (1 − x), where Ψ−1

t (x) = inf{y : Ψt(y) > x}, inf ∅ = 1. In other words,

the graph of Ψ̃t is the reflection of the graph of Ψt with respect to the axis y = 1 − x.
The semigroup (Ψ̃t)t≥0 might be called the dual to the semigroup (Ψt)t≥0.

As an example, the semigroups given by (1.4) and (1.5) are duals to each other. The
dual to semigroup (1.3) is given by

Ψt(x) = e−tx+ 1 − e−t, t ≥ 0, x ∈ (0, 1].

Then ∫

R

xd(Ψt(DX(x))) = (1 − e−t) essinf
ω

X(ω) + e−tEX.

This semigroup does not have nice properties as Ψt(0+) > 0.

3. Mixture. Let Gi be generators and (Ψi
t)t≥0 be the corresponding semigroups,

i = 1, 2. Then G = G1 +G2 is again a generator. It follows from Theorem 2.1 combined
with Lemma 2.2 that the corresponding semigroup satisfies

Ψt(x) = lim
n→∞

(
Ψ1

t

n

◦ Ψ2
t

n

)n
, t ≥ 0, x ∈ (0, 1].

This operation might be called the mixture of semigroups.

4. Minimum. Let Gi be generators, (Ψi
t)t≥0 be the corresponding semigroups, and

αi be the corresponding indices, i = 1, 2. Then G = G1 ∧ G2 is again a generator and
the corresponding semigroup (Ψt)t≥0 is the maximal distortion semigroup dominated by

both (Ψ1
t )t≥0 and (Ψ2

t )t≥0. Indeed, if a semigroup (Ψ̃t)t≥0 is dominated by both (Ψ1
t )t≥0

and (Ψ2
t )t≥0, then its generator G̃ is dominated by both G1 and G2.

The corresponding index α is then characterized as the smallest semigroup index
(i.e. an index corresponding to a distortion semigroup) that dominates both α1 and α2.
This is seen from the following property, which is easy to prove: a semigroup index α̃
corresponding to a semigroup (Ψ̃t)t≥0 dominates a semigroup index α corresponding to a

semigroup (Ψt)t≥0 if and only if Ψ̃t ≤ Ψt for any t ≥ 0.

5. Maximum. Let Gi be generators, (Ψi
t)t≥0 be the corresponding semigroups, and

αi be the corresponding indices, i = 1, 2. Let G be the smallest concave majorant of G1

and G2. Then G is again a generator and the corresponding semigroup (Ψt)t≥0 is the
minimal distortion semigroup dominating both (Ψ1

t )t≥0 and (Ψ2
t )t≥0.

The corresponding index α is then characterized as the largest semigroup index that
is dominated by both α1 and α2.
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6 Conclusion

The aim of this paper is to extract a sufficiently small subclass from the class of coherent
acceptability indices introduced in [7]. For this, we have considered the indices from
the AIW class corresponding to a family of concave distortions (Ψt)t≥0 satisfying the
semigroup property

Ψt ◦ Ψs = Ψs+t, s, t ≥ 0.

These are called concave distortion semigroups.
It has been proved that distortion semigroups are in a one to one correspondence with

concave functions G : (0, 1) → (0,∞) via the relations

Ψt(x) = inf
{
y ∈ [x, 1] :

∫ y

x

1

G(s)
ds = t

}
, t ≥ 0, x ∈ (0, 1],

G(x) = lim
t↓0

Ψt(x) − x

t
, x ∈ (0, 1).

The function G is called the generator of the semigroup (Ψt)t≥0.
In order to further narrow the class of good distortion semigroups, we have considered

several properties desirable from the mathematical or the economical perspective. An
example of a semigroup having all the nice properties is provided by

Ψt(x) = xe−t

, t ≥ 0, x ∈ [0, 1],

which corresponds to the transformed AIMAX index from [7]. Table 2 gives a correspond-
ing overview of performance measures in decreasing order of generality.

We have also considered the problem of finding a semigroup (Ψt)t≥0 with Ψ1 = Ψ,
where Ψ is a given concave distortion. This problem has potential practical applications
because by comparing the physical measure (extracted from the data) and the risk-neutral
measure (extracted from option prices), one can derive the concave distortion Ψt∗ for some
value t∗, and then the problem of recovering the whole semigroup (Ψt)t≥0 arises. We have
proved the uniqueness of the solution to this problem under the additional assumption
Ψ′

−(1) > 0. An approximation algorithm for finding the corresponding generator has also
been provided. It was also shown that such a semigroup does not exist for all concave
distortion functions Ψ. The problem of describing the class of functions Ψ, for which
there exists such a semigroup, remains open.

The class of coherent acceptability indices corresponding to distortion semigroups is
closed under several interesting operations.
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Class of performance measures Examples

General performance measures SR(X) = EX/σ(X),

RAROC(X) = EX/V@R(X)

Coherent acceptability indices GLR(X) = EX/EX−

AIW indices CRAROC(X) = EX/ρ(X)

with ρ from the WV@R class

Semigroup indices (1.2)+(1.3), (1.2)+(1.4)

Semigroup indices with nice properties (1.2)+(1.5)

Table 2. The left column displays five classes of performance
measures given in decreasing order of generality. For each of
these classes, the right column provides examples of perfor-
mance measures belonging to this class and not to the next one.
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