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Abstract. This paper is the continuation of [6] and deals with further applica-
tions of coherent risk measures to problems of finance.

First, we study the portfolio optimization problem in two forms.

Furthermore, the results obtained are applied to the optimality pricing. Three
forms of this technique are considered.

Finally, we study the equilibrium problem both in the unconstrained and in
the constrained forms. We establish the equivalence between the global and the
competitive optima and give a dual description of the equilibrium. Moreover, we
provide an explicit geometric solution of the constrained equilibrium problem.

Most of the results are presented on two levels: for a general model, the results
have a probabilistic form; for a static model with a finite number of assets, the
results have a geometric form.

Key words and phrases. Coherent risk measure, equilibrium, extreme mea-
sure, generator, liquidity, No Better Choice, optimality pricing, portfolio optimiza-
tion.

1 Introduction

1. Goal of the paper. In this paper, we consider applications of coherent risk mea-
sures to

e portfolio optimization;

e optimality pricing;

e cquilibrium.

2. Optimization. The optimization problem is considered in two forms. First, we
study what we call the agent-independent optimization. It is, in fact, the Markowitz-type
optimization problem with variance replaced by a coherent risk measure!, i.e. a problem
of the form

EX — max,

p(X) < e )

Tt has been clear from the outset that variance is not a very good measure of risk because high
profits are penalized in the same way as high losses. In [21], Markowitz proposed a way to over-
come this problem by considering semivariance ||[(X — EX)7||z2 instead of variance. The function
p(X) = —EX 4+ of|(X — EX) " ||z2 with 0 < a < 1 is, in fact, an example of a coherent risk mea-
sure (see [14]). Thus, in essence, semivariance is a particular case of the coherent risk. However, there
exist more convenient coherent risk measures (a comparison of different ones is given in [8]).



Here X means the discounted P&L earned by a portfolio and p is a coherent risk measure
(P&L means the Profit&Loss, i.e. the difference between the terminal wealth and the
initial wealth). Let us remark that this problem was considered in [1], [25], [26]%. As
opposed to these papers, we have at our disposal the notion of a generator introduced
in [6]. In terms of generators, we are able to provide an explicit geometric representation
of the optimal portfolio (see Figures 1, 2). The model we are considering takes into
account such market imperfections as cone portfolio constraints, transaction costs, and
the ambiguity of the historic probability measure.

Problem (1.1) is the optimization problem for an investor who has some sum of money
and invests it in some securities. However, it is possible that already before this investment
he/she possesses a capital with a random terminal value W (it might have a financial or a
non-financial structure; for example, it might be the terminal wealth of a firm producing
some goods). If the investor applies a trading strategy providing a P&L X, then he/she
passes from W to X + W. If the investor is trying to minimize the risk, he/she is faced
with the problem

p(X + W) — min, (1.2)

which we call the single-agent optimization problem. Note that this coincides with the su-
perreplication problem for the NGD pricing (see [6; Subsect. 3.6]). We provide a geometric
solution of (1.2) for a model with portfolio constraints; see Figure 4 (in [6; Subsect. 3.6]
we gave a geometric solution for the case with no constraints). Also, in [7; Sect. 5], we
provide sufficient conditions for the uniqueness of a solution of (1.1) and (1.2).

3. Optimality pricing. In [6], we considered two forms of the pricing technique
based on coherent risks: utility-based NGD and RAROC-based NGD. Both of them yield
interval estimates of a price. However, pricing often means providing a point estimate.
In this paper, we combine the RAROC-based NGD with problem (1.1), thus obtaining
a pricing technique, which provides a point estimate. We call it agent-independent No
Better Choice pricing (henceforth, No Better Choice will be abbreviated as NBC). Further
research (see [9]) shows that the agent-independent NBC pricing is, in fact, the analog of
the empirical asset pricing® with the expected utility replaced by the coherent one.

The agent-independent optimality pricing provides a unique price of a contingent claim
for any agent. Thus, it does not take into account personal preferences and endowments
of different agents. We also introduce another form of the optimality pricing, which takes
into account these parameters, thus providing different fair prices of the same contingent
claim for different agents. We call it single-agent optimality pricing. It is based on
optimization problem (1.2) and might be considered as the analog of the classical utility-
indifference pricing (also known in the finance literature as reservation pricing) with the
classical expected utility replaced by the coherent one.

Then we introduce one more technique called the multi-agent optimality pricing. The
idea is as follows. We have a contingent claim and several agents, each having his/her
own endowment and employing his/her own coherent utility. A price is said to be fair
if it provides no trading opportunity, which would allow each agent to increase his/her
utility (this is a modified form of the idea proposed in [5]). As an outcome, this technique
typically provides a whole interval of prices, which are fair for this group of agents (in

2If p is defined by a finite number of probabilistic scenarios, i.e. p(X) = —min,—q
then (1.1) coincides with the optimization problem considered in the generalized Neyman—Pearson lemma
(see [20; Ch. 3]).

3Empirical asset pricing based on the classical expected utility is very popular in the modern academic
finance literature; see, in particular, [2], [16], [27], [28].



fact, this interval is the convex hull of fair prices for these agents produced by the previous
technique).

4. Equilibrium. One of the basic results of the classical economic theory is the
equivalence between the global optimum (known also as the “Soviet-type optimum”) and
the competitive optimum (known also as the “western-type optimum”); see [19]. This
result is established within the framework of the expected utility.

In the present paper, we establish an analog of this result within the coherent utility
framework. This is done for two types of equilibrium: for the unconstrained one (Theo-
rem 4.7) and for the constrained one (Theorem 4.13). A very important feature of coherent
utility (which is not shared by the expected utility) is that it admits a rich duality theory.
Thus, besides establishing the equivalence between different types of equilibrium, we also
provide its dual description.

Moreover, for the constrained equilibrium problem, we are able to provide an explicit
geometric solution based on generators (see Figure 10). It yields the equilibrium price as
well as the equilibrium portfolios of the agents.

Some of our results on equilibrium are, in fact, extensions of results of the paper [15]
by Heath and Ku. Let us also mention the papers [3] and [18], which study the two-agent
unconstrained equilibrium and, in particular, give the explicit solution of this problem
for some particular cases. The results of Subsection 4.1 are close to those obtained by
Filipovic and Kupper [12], [13]; the major differences are that these papers deal with
convex risk measures (that are more general than coherent ones) but we are considering
the possibility that each participant can trade in the market.

5. Structure of the paper. Section 2 deals with the optimization problem. In
Subsections 2.1 and 2.3, we consider the two settings described above. In Subsection 2.2,
the obtained results are applied to the problem of finding the optimal structure of a firm
consisting of several units. In Subsection 2.4, we apply the obtained results to the study
of the liquidity effects in the framework of the NGD pricing considered in [6].

Section 3 is related to the optimality pricing. Subsections 3.1, 3.2, and 3.3 correspond
to the three techniques described above.

Section 4 deals with equilibrium. Subsections 4.1 and 4.2 are, in fact, duals of each
other: they consider the unconstrained and the constrained equilibria, respectively.

Altogether, there are seven pricing techniques based on coherent risk proposed in [6]
and in the present paper. They are compared in the final Section 5.

2 Optimization

2.1 Agent-Independent Optimization

We consider the model of [6; Subsect. 3.2]. Thus, we are given a probability space
(2, F,P), a convex weakly compact set RD C P, an L'-closed convex set PD C RD,
and a convex RD-adapted (see [6; Def. 3.2]) set A C L°. Let us introduce the notation
ErpX = infeppEqX, u(X) = infgenp EqX, p(X) = —u(X) (we understand EqX
according to the convention of [6; Def. 2.3]).

Problem (agent-independent optimization): The problem is

EpDX — Imax,
XeA pX) <q
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where ¢ € R, . Clearly, if A is a cone, then this problem is obviously equivalent to the
problem of finding
R. = sup RAROC(X)

XeA
and
X, = argmax RAROC(X),
XeA
where

+00 if EppX > 0 and U(X) >0,
RAROC(X) = EppX
p(X)
with the convention ¢ =0, 2 =0.

0
The only statement we can make at this level of generality is that

otherwise

<&:AM{R>O:(—L—PD+~4E—RD)HR#ﬂ},

1+ R 1+ R

where R is the set of risk-neutral measures (see [6; Def. 3.1]). This follows from [6;
Cor. 3.10]. Of course, in general X, need not exist.

We will now study the problem for a static model with a finite number of assets.
Let PD C RD C P be convex sets, A = {(h,S; — So) : h € H}, where Sy € R¢,
S ...,8% e LL(RD), and H C R? is a closed convex cone. From the financial point of
view, S¢ is the discounted price of the i-th asset at time n and H is a convex portfolio
constraint. Let us introduce the notation (see Figure 1)

H*={x eR*:Vh e H, (h,z) > 0},
E = cl{EqS; : Q € PD},

G = cl{EqQS; : Q € RD},

D =G+ H",

(2.1)

where “cl” denotes the closure, and let D° denote the relative interior of D. (The set
G is the generator for S; and u.) The sets E and G are convex compacts, while D is
convex and closed. Note that, for h € H,

Ep1)<h, Sl — So> = inf <h,{,E — Sg), (22)
ek

u((h,S1 — So)) = inf (h,z — Sp) = inf (h,x — Sp). (2.3)
z€G z€D

We will assume that Sq € D°\ E. This assumption is justified economically. Indeed,
if So € E, then, in view of (2.2), RAROC(X) = 0 for any X € A; if Sy ¢ D°, then, in
view of (2.3), there exists X € A with RAROC(X) = oo (provided that E belongs to
the relative interior of G).

For A > 0, we denote E(\) = Sog—\(E—Sp) and set A, =sup{A > 0: E(A\)ND # 0},

N ={h€H :JaeR Yz E(\,),YyeD, (h,x) <a < (h,y) and Vye D, (h,y) > a}.

Note that A, > 0 due to the condition Sy € D°\ E. Furthermore, N is non-empty
provided that A, < co. In the case, where A\, = oo, we set N = H.

Theorem 2.1. We have R, = \;' and argmax;.,; RAROC((h, S; — Sp)) = N.

4



Figure 1. Solution of the optimization
problem. Here h, is an optimal h.

Proof. We will prove the statement for the case A\, < oco. The proof for the case
A, = oo is similar. Take T € F(\,) N D and set U = Sg — A\, 1 (T — Sp).
If h € N, then
infmeE(h, T — S(]> <h, U - S()>

J— = - = _1
RAROC((h, S1 — S))) = — inf,p(h,z — So)  —(h, T — So) A

If h € H\ N, then there are three possibilities:

1) h is orthogonal to the smallest affine space containing D

2) SupmeE(A*)<hﬂ {L“> > <h, T>;
3) infm€D<h: fl?) < <h: T> .

In the first case, RAROC((h, S; — Sp)) = 0. In the second case,

inf <h,.ﬁE — S(]> < <h, U— S()>, inf <h,.ﬁE — S(]> < <h, T— S(]>,

zeE xzeD

so that RAROC((h, S; — Sp)) < A;'. The third case is analyzed in a similar way. O

As a corollary, in the case, where PD = {P} and H = R¢, the solution to the
optimization problem is found as follows (see Figure 2). Let T be the intersection of the
ray (E,Sp) (in this case E = EpS;) with the border of G. Then

E —
sup RAROC((h, S; — S,)) = M,
heRd |SU - T|

while argmax; ps RAROC((h, S; — S)) is
Ne(T) :={h e R*: Yz € G°, {(h,x —T) > 0}.

In the case, where G has a non-empty interior, Ng(T') is the set of inner normals to G
at the point T'.

Important remark. In order to find the solution of the optimization problem for the
case PD = {P}, H =TR?, one needs to know the generating set G and the vector EpS; .
The empirical estimation of GG is a problem similar to the empirical estimation of volatility,
and hence, it can be successfully accomplished. However, the empirical estimation of the
mean vector EpS; is known to be a very unpleasant problem because it is very close
to 0 (see the discussion in [4] and the 20’s example in [17]). But the well-known security



Figure 2. Solution of the optimization prob-
lem in the case PD = {P} and H = R¢

market line relationship of Sharpe [30]* helps to overcome this problem. This relation

states that
gz' i gz ‘ §M N §M
EP<%°—T> :5%(%4 , i=1,....d,
S0 Sp!
where 7 is the risk-free interest rate, Si = (1 +7)"S! are true (not discounted) prices,

and gé” is the price of the market portfolio at time n. Hence,
Ep(S! — S}) = Bconst, i=1,....d.

The constant here contains as a factor the expected excess return on the market portfolio,
which is again hard to estimate. But note that for our purposes this unknown constant is
not needed! Indeed, the geometric solution of the optimization problem presented above
requires only the direction of the vector EpS; — Sy, and this depends only on (8!,...,39).

The following example shows that in natural situations the set of optimal strategies h,
might not be unique (of course, the uniqueness of h, should be understood up to multi-
plication by a positive constant).

Example 2.2. Let S} have a continuous distribution with ES] < oo and take
S? = (S} — K)* (so that the second asset is a call option on the first one). Let
PD = {P}, RD be the determining set of Tail V@R of order A (see [6; Ex. 2.5]) and
H = R?. Assume that F = o(S]). It is easy to see that Xpp(S]) consists of a unique
element Q = A1I(S] < ¢\)P, where ¢y is the A-quantile of S]. The border of G has
an angle /4 at the point 7' = Eq(S},S5?) (see Figure 3). Let S, = 2221 Then
Ng(T)={heR*:ht >0, h* > —h'}. O

Let us now find the solution of the optimization problem in the Gaussian case.

Example 2.3. Let S; have Gaussian distribution with mean @ and covariance ma-
trix C'. Let PD = {P}, H = R?, and RD be the determining set of a law invariant
coherent utility function u that is finite on Gaussian random variables. Assume that Sy
belongs to the relative interior of G and Sy # a.

There exists v > 0 such that, for a Gaussian random variable ¢ with mean m and
variance o2, we have u(§) = m — vyo. Let L denote the image of RY under the map
x +— Cx. It is easy to see that

G=at{CP: 2] <y} =a+{yeL:(y,0 ") <.

“The whole CAPM and, in particular, the SML relation admit a version based on coherent risk
measures instead of variance; see [9].



Figure 3. Nonuniqueness of an optimal strategy

We have T' = a + «(Sy — a) with some « > 0. It is easy to see that h € Np(T) if and
only if (h,a — Sg) > 0 and, for any y € L such that

d

E 5:0<T o a+€yacil(T o Cl—|—€y)> = O:

we have (pr;h,y) = 0 (pr; denotes the orthogonal projection on L). This, in turn, is
equivalent to the equality pr;h = /C (a—T) = cC~!(a—Sy) with some constant ¢ > 0.
Thus,

Np(T)={h € R*: Ch = c(a — S), ¢ > 0}.

Note that this set does not depend on u!
It is easy to see that

R — |So—a| _ |S(]—(l| _ (So—a,C’l(Sg—a»l/Q
YT =Sl T —a|—1|So—al v —{So—a,C~(Sy—a))/2’
This equality can also be deduced from [6; Ex. 3.14]. O

2.2 Optimal Structure of a Firm

Let (2, F,P) be a probability space, D C P be a convex set (we assume that P € D) and
let X',...,X% € L! (D) be the discounted P&Ls produced by different components of
some firm (P&L means the Profit&Loss, i.e. the difference between the terminal wealth
and the initial wealth).
We will consider the problem
Ep(h, X) — max, (2.4)
heRL pl(h, X)) <c.

where ¢ is a positive constant meaning the risk limit on the whole firm. From the financial
point of view, (2.4) is the problem of the central management of the firm deciding which
components should grow and which should shrink. This is a particular case of the opti-
mization problem of the previous subsection (with PD = {P}, RD =D, and H =R%),
so that we already have a geometric recipe to find the optimal solution. Here we will
present an economic characterization of optimality. We will consider an arbitrary convex
cone constraint H (not only R? as in (2.4)). We assume that EpX # 0 and that the
generator G given by (2.1) is strictly convex, i.e. its interior is non-empty and its border
contains no interval.



Definition 2.4. We define the RAROC contribution of X to Y as

EpX
RAROCS(X:Y) = — 2
() pe(X;Y)

where p¢ is the risk contribution (see [6; Subsect. 2.5]).

The RAROC contribution is well defined provided that p°(X;Y") is well defined and
FXY) £ 0,

Remarks. (i) The RAROC contribution may take on negative values.
(ii) We have RAROC(X; X) = RAROC(X).

Theorem 2.5. If h € H and
d d
RAROCC<h1X1; 3 hiXZ') — ...— RAROC® (thd; 3 hiXi) , (2.5)
i=1 1=1

then h € argmax;,.; RAROC((h, X)) and all the elements of this equality are equal to R, .
Conversely, if h is an inner point of H and h € argmax,.y; RAROC((h, X)),
then (2.5) is satisfied.

Proof. Denote > h'X’" by Y. Obviously, u‘(h’X%Y) = h'u‘(X%Y). Re-
peating the arguments of the proof of [6; Th. 2.12], we get u¢(X%Y) = U’, where
U = argmings(h,z), and U is unique due to the strict convexity of G. Thus,
(2.5) is equivalent to: EpX = —RU, where R = RAROC®(R‘X%Y). It is seen
from the geometric results of the previous subsection that this condition implies that
h € argmax, e RAROC((h, X)). As u((h, X)) = (h,U), we get RAROC((h, X)) = R,
so that R, = R.

Conversely, if h is an inner point of H, then argmin ., (h,z) = argmin, o(h,z) = U
(D is given by (2.1)). Moreover, u°(X%Y) = U’. Recalling the results of the previous
subsection, we see that U = —R,Ep.X, which yields the second statement. O

Remark. The additional assumption that A is in the interior of H is essential for the
converse statement of Theorem 2.5. As an example, take H = {ahg : @ € Ry}, where
ho is a fixed vector. Then clearly hy € argmax,.; RAROC((h, X)), but of course (2.5)
might be violated.

2.3 Single-Agent Optimization

Let (€2, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, A C L° be a D-consistent convex cone, and W € L}(D).
From the financial point of view, W is the terminal endowment of some agent, while A
is the set of additional discounted P&Ls the agent can obtain by trading.

Problem (single-agent optimization): Find

u, = sup u(W + X)
XeA

and

X, = argmaxu(W + X).
XeA



Proposition 2.6. We have

u, = inf EqQW,

QeDPNR

where R is the set of risk-neutral measures and inf () := oco.

Proof. This statement is, in fact, a reformulation of [6; Prop. 3.20]. O

We will now study the problem for a static model with a finite number of assets. Let
D C P be a convex set, A = {(h,X):h € H}, where X = (X',..., X% € L. (D) and
H CR? is a closed convex cone. For the case H = R?, we provided a geometric solution
of this problem in [6; Subsect. 3.6]. For an arbitrary H, it is more complicated and is

given below. Let us introduce the notation (see Figure 4)

G = c{Eq(X, W) : Q € D},

H={zeR"" :(z',... 2% e H, 2% =1},
H*={z eR"' :Vhe H, (hz) <0},

e=(0,...,0,1),

A =inf{A e R: (Ne+ H*) NG # 0},
N={heR" :p™' =1 andJaeR:

Vo € Me+ H*, Yy € G, (h,z) <a<(hy}

N={heR*: (h1) e N}.

If A\, = o0, we set N =N =0.

Figure 4. Solution of the optimization
problem. By Hy we denote A.e + H*.
Here N = {h,} and N = {h,}.

Theorem 2.7. We have u, = A\, and argmax, .y u(W + (h, X)) = N.



Proof. Fix A < A,. As ( is a convex compact and I:T* is convex and closed, there
exist h € R™! and a,b € R such that, for any z € e + H* and any y € G, we have
(h,z) <a<b<(hy). As G is compact, h can be chosen in such a way that hdJrl # 0.
Since H* D {ae : a < 0}, we have A% > 0. Without loss of generality, h®t! = 1.
Then, for any z € H*, we have (h,z) < a — A. As H* is a cone, for any z € H*,
we have (h,z) < 0 and a — A > 0. Let h be the d-dimensional vector that consists of
the first d components of h. Assume that h ¢ H. Then in the d-dimensional plane
{z € R : 241 =1} we can select a (d — 1)-dimensional plane L that separates h from
H. Consider the d-dimensional plane generated by the origin of R? and L, and let x
be its normal such that (%,x) > 0. Then supgeﬁ(g,@ < 0. Consequently, z € H*, but

then we get a contradiction with the choice of h. As a result, h € H. Furthermore,

w(W + (h, X)) = inf Eq(W + (h, X)) = inf (h,z) > A.
QeD z€G
As A < A, has been chosen arbitrarily, we conclude that supjcy u(W + (h, X)) > A,.

Let us prove the reverse inequality. =~ We can assume that A, < oo. Let
2o € (\e + H)NG. Fix h € H and set h = (h,1). Then

w(W + (h, X)) = inf (h, z) < (h, ).

zeG
We can write zy = M. + 2 with 29 € H*. Then (7L, xo) = A + (E, 20) < Ax. Thus,
suppeg (W + (h, X)) < A, As a result, u, = A,.
Let us prove the equality argmax; ., u(W + (h, X)) = N. In the case A\, = oo, its
left-hand side and its right-hand side are empty, so it is trivially satisfied. Assume now
that A\, < oo. Let h € N. Using the same arguments as above, we show that » € H. For

h = (h,1), there exists a € R such that, for any = € A\,e + H* and any y € G, we have
(h,z) < a < (h,y). The same arguments as above show that a > \,. Consequently,

w(W + (h, X)) = inf (h,z) > a > A,
zelG
Let h € H be such that w(W + (h, X)) = A,. This means that, for~7L = (h,1),

we have 1nf$€G(h x) > A.. Furthermore, for any z = A + 2 € Ae + H*, we have
(h,z) = (h, A\ce) + (h,z) < \,. Thus, h € N, which means that h € N. O

Example 2.8. (i) Let H = R!. Then H* = {ae : a < 0},
A = inf{z?! : z € Gy}, where Go = G N ({0} x R). The condition u, < oo is
equivalent to: Go # 0. If G° N ({0} x R) # (), where G° denotes the relative interior
of G, then N # (). If G°N ({0} x R) = (), then both cases N # () and N = () are possible
(see Figure 5).

(i) Let H# = RY. Then H* = R, and A\, = inf{a®' : 2 € G_}, where
G_ =GN R xR). O

2.4 Liquidity Effects in the NGD Pricing

Let (€2, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, and A C L° be a convex D-adapted set containing zero. We
assume that there exists no X € A with u(X) > 0, i.e. the utility-based NGD condition
is satisfied. Let F' be the discounted payoff of a contingent claim.

10
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Figure 5. Existence (right) and nonexistence
(left) of an optimal strategy for the case H = R?

Definition 2.9. We define the upper and lower wutility-based NGD price functions
of F as

V(F,v) = sup{z : the model (Q, F,P,D, A — v(F — x)) satisfies the NGD}, v > 0,
V(F,v) = inf{z : the model (Q, F,P, D, A+ v(F — z)) satisfies the NGD}, v > 0.
From the financial point of view, v means the volume of a trade.

Remark. If A is a cone, then

(F,-)=inf{z:3X € A:u(X — F+z) >0},
(F,-)=sup{z:3X € A:u(X + F —z) > 0}.

= =l

These are the upper and the lower prices, which were studied in [6; Subsect. 3.6]. Thus,
the investigation of V' (F,v) and V. (F,v) is meaningful only if A does not have a cone
structure. This corresponds to the liquidity effects.

In view of the equality V(F,v) = —V(—F,v), it is sufficient to study only the prop-
erties of V(F, -).

Theorem 2.10. Let F € L}(D).
(i) The function V(F, -) is increasing and continuous.
(ii) We have
limV(F,v) = sup EqF.
vl0 QeDPNR
(iii) We have
lim V(F,v) < sup EqF.

V— 00 QeD

If supyea qep [EQX| < 00, then

lim V(F,v) = sup EqF.

V— 00 QeD

Proof. (i) It follows from the equality

sup u(—v(F — x) + X) = v + sup u(—vF + X)
XeA XeA

11



that V(F,v) = —v~! f(v), where f(v) = supyc,u(—vF + X). Note that f is finite due
to the NGD and the condition F' € LY(D). Fix v1,v3 > 0, ¢ > 0, o € [0,1] and find
X1, X, € A such that u(—v;F + X;) > f(v;) —e, i =1,2. Then

flavy + (1 — a)v) > u(—(avy + (1 — @)vy) F + aX; + (1 — ) X5)
> au(—vi F + X1) + (1 — a)u(—vo F + Xs)
> af(v) + (1 —a)f(v2) —e.
Consequently, f is concave. As A contains zero and the NGD is satisfied, we have

f(0) = 0. This leads to the desired statement.
(ii) By Proposition 2.6,

sup u(—vF+ X)= inf Eq(—vF)=—v sup EqF,
X €Econe A QeEDNR QeDNR

where “cone” denotes the cone hull. Take ¢ > 0 and find Xy, € A, ag > 0 such that

u(—F + apXy) > — sup EqF —e.
QeDPNR

As the function Ry 3 z +— u(—zF + zaXj) is concave and vanishes at zero, we have

u(—vF +vapXg) > ’U<— sup EqF — 5), v < 1.
QeDNR

As € > 0 has been chosen arbitrarily, we get

limsup V (F,v) = limsup(—v~' f(v)) < sup EqF.
vl0 vl0 QeDNR

Combining this with the inequality

sup u(—vF + X) < sup inf Eq(—vF + X)= inf Eq(—vF)=—v sup EqF,
XeA X€AQeDPNR QeDNR QeDNR

we get the desired statement.
(iii) The first statement follows from the inequality

sup u(—vF + X) > u(—vF) = —v sup EqF.
XeA QeD

The second statement is an  obvious consequence of the equality
V(F,v) = —supyeq u(—F + v 'X). O

Remark. If supyc4 qep |EQX| < 0o, then

V(F,00) — V(F,00) = sup F — inf F,

QeD QeD

which is the length of the NGD price interval in the absence of a market. The difference

V(F,0) -V (F,0)= sup F— inf F

QeDPNR QeDPNR

is the length of the NGD price interval in the presence of a market. Thus, the ratio

V(F,0) — V(F,0)

V(F,00) — V(F, )

measures the “closeness” of a new instrument F' to those already existing in the market.
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]Rd

Figure 6. The form of V(F,0),

V(F,o0), V(F,0), and V(F,o0)

Example 2.11. Consider a static model with a finite number of assets, i.e.
A={(h,X): h € H}, where X = (X',..., X% € LL(D) and H C R? is a convex
bounded set. Assume that H contains a neighborhood of zero. Consider the generator
G ={Eq(X,F):Q € D}. Then

V(F,0) =sup{z®*!:2' = ... =24 =0, 2 € G},
V(F,00) = sup{z®™ : x € G}

(see Figure 6). Note that these values do not depend on H'! O

3 Optimality Pricing

3.1 Agent-Independent Optimality Pricing

Consider the model of [6; Subsect. 3.2]. Thus, we are given a probability space (2, F,P),
a convex weakly compact set RD C P, an L'-closed convex set PD C RD, and a convex
RD-adapted set A C L. Assume that 0 < R, < oo, where R, = supy.4 RAROC(X).
It follows from [6; Cor. 3.10] that

1 R
R.=nf R>0:(——PD+—RD|NR
1n{ > (l—i-RP +1+R ) 75@}
and D, N'R # 0, where
1 R,
D, = D D.
l—l—R*P +1+R*R

Definition 3.1. An agent-independent NBC price of a contingent claim F is a real
number x such that

sup RAROC(X) = sup RAROC(X),
XeA+A(x) XeA

where A(xz) = {h(F —z) : h € R}. The set of the NBC prices will be denoted by Inpc(F).

This pricing technique corresponds to the agent-independent optimization. A price x
is fair if adding to the market a new instrument with the initial price  and the terminal
price F' does not increase the optimal value of the RAROC in this optimization problem.

13



Figure 7. The structure of D, NR

Proposition 3.2. For F € L}(RD),
[NBC(F) = {EQF : Q € D* N R}

Proof. If x € Inpc(F), then, by [6; Cor. 3.10], there exists Q € D, NR(A + A(z)).
This means that Q € D, N R and EqF = z.

Conversely, if © = EqF' with some Q € D,NR, then, for any X +h(F—z) € A+ A(x),
we have EqX < 0, so that Q € R(A + A(x)). Due to [6; Cor. 3.10],
SUD x4 44(z) RAROC(X) < R,. O

The following statement yields a more definite representation of D, N'R.

Proposition 3.3. If PD = {P}, X, € argmaxy., RAROC(X), and Xrp(X,) con-
sists of a unique measure Q,, then

1 R,
D, = P « (- 1
nr={ e e (.1)

Proof. Take an arbitrary measure

1 R,
— P eD,.NR.
Q 1+ R, +1+R*Q1

We have

EpX, + R, inf EqX, < EpX, + R,Eq, X, < Eq,X, <0
QERD

(the second inequality follows from our generalized definition of the expectation, while
the third inequality follows from the inclusion Qo € R). In view of the equality
EpX B

RAROC(X,) = R,,
we get
Ep X, + R, inf EqQX =EpX, + R.Eq, X..
QERD

It follows that Q; € Xp(X.), i.e.

| R,
D.AR C p A
ﬁR—{Hm +1+R*Q}

14



As the set on the left-hand side is non-empty and the set on the right-hand side is a
singleton, we get the desired equality. a

Remarks. (i) If RD is the determining set of Weighted V@R (see [6; Ex. 2.5]) and X,
has a continuous distribution, then Xzp(X,) is a singleton (see [7; Sect. 6]). Thus, in the
most natural cases Iypc consists of one point.

(ii) One of techniques for pricing in incomplete markets consists in finding the repre-
sentative of the set of risk-neutral measures that is the closest one to P in some sense
(typically the relative entropy or some other measure of distance is minimized). Note that
the set D, N'R is exactly the set of measures Q from R that are the closest ones to PD,
the “distance” being measured by

) _ 1 R B
p(Q,RD) :1nf{R.E|Q1 € PD,Qy € RD: —1+RQ1+—1+RQ2 —Q}.

We will now study the problem for a static model with a finite number of assets.
Let PD C RD C P be convex sets, A = {(h,S; — So) : h € H}, where Sy € R¢,
St ...,8¢ e LL(RD), and H C R? is a closed convex cone. Assume that 0 < R, < oc.
Let F € L. (D) be a contingent claim. Let us introduce the notation (see Figure 8)

H*={z eR*:Vh e H, (h,z) > 0},
H* = H* x {0},
E = Cl{EQ(Sl,F) : Q S PD},

G = l{Eq(S,,F) : Q € RD},

D =G+ H,

~ 1 ~ R ~
Dp = E D.
R 1 R T ITR

Inpc(F)—~

Figure 8. The form of Inypc. Here
Inpco(F) consists of one point.
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Theorem 3.4. We have
R, =inf{R>0: DN ({Sy} x R) # 0}, (3.2)
Inge(F) = {z: (Sy,z) € Dg.}. (3.3)
Proof. Denote

E = cl{EqS; : Q € PD},
G = cl{EqQS; : Q € RD},

D =G+ H",
1 R
Dy = E D.
R=1 R ITR

Note that E = prpa E, G = prpa é, H* = prya ﬁ*, and consequently, D = prpq l~),
Dp = prra Di. Combining this with the results of Subsection 2.1, we get

R,=inf{R>0:Dp> S} =inf{R>0:Dpn ({So} x R) # 0}.
Furthermore, for any = € R,

sup RAROC(X) = inf{R > 0: Dg 3 (S;,2)}.
A+A(x)

This, combined with (3.2), proves (3.3). O

To conclude this subsection, we find the form of Iygc(F) in the Gaussian case.

Example 3.5. Consider the setting of [6; Ex. 3.14]. Clearly, R, is the solution of the
equation (Sy — a,C™(Sy — a)) = % (cf. Example 2.3). This, combined with the
form of Inap@w)(F) found in [6; Ex. 3.14], shows that Ixpc(F') consists of a unique point
(b, So —a) +EF. Let us remark that this value coincides with the fair price of F' obtained

as a result of the mean-variance hedging. Note that this value does not depend on «! O

3.2 Single-Agent Optimality Pricing

Let (€2, F,P) be a probability space, u be a coherent utility function with the weakly
compact determining set D, A C L° be a D-consistent convex set containing zero, and
W € LY(D). The financial interpretation is the same as in Subsection 2.3.

Definition 3.6. A single-agent NBC price of a contingent claim F' is a real number x
such that
max u(W + X + h(F —z)) = u(W).

X€EA, heR
The set of the NBC prices will be denoted by Ingc(F).

This pricing technique corresponds to the single-agent optimization. A price z is fair
if adding to the market a new instrument with the initial price x and the terminal price F'
does not increase the optimal value of the utility in this optimization problem.

Theorem 3.7. For F € L}(D),

INBC(F) = {EQF Qe XD(W) N R} (34)
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Remarks. (i) The set of the NBC prices is non-empty only if W is optimal in the sense
that maxxea u(W 4+ X) = u(W). However, if W is not optimal, then, as seen from the
proof of Theorem 3.7, Xp(W)NR = (), so that (3.4) still holds.

(i) If W is optimal and Xp(W) consists of a unique measure Q,, then
Ingo(F) = {Eq.F}. For example, this is true if D is the determining set of Weighted
V@R (see [6; Ex. 2.5]) and W has a continuous distribution (see [7; Sect. 6]). The
dependence on A formally disappears in this case.

Proof of Theorem 3.7. As A contains zero and the function Ry 3 o +— u(W+aX)
is concave for a fixed X, the condition x € Ingc(F) is equivalent to:

max u(W+ X + h(F —z)) = u(W).

X éEcone A, heR

By Proposition 2.6, this is equivalent to:

inf EQW = 1nf EQVV,
QeDNR(A+A(x)) QeD

where A(x) = {h(F —x) : h € R}. Clearly, the latter condition is equivalent to:
Xp(W)NR(A+ A(z)) # 0. It is easy to verify that this is equivalent to: 2 = EqQF
for some Q € Xp(W)NR. O

Let us now provide a geometric representation of Iypc(F) (see Figure 9). Assume
that w(IW) = maxxes u(W 4+ X) (the reasoning used above shows that this is equivalent
to: Xp(W)NR # 0). Consider the generator G = {Eq(F,W) : Q € DN R} and the
function f(z) =inf{y: (v,y) € G} (we set inf ) = +o0).

I
I
+

X T
Inpow,aw) (F)
=Inpoo,w)(F)

Ingpm,a)(F)

Ingp()(F)

Figure 9. Comparison of various price in-
tervals. Here G = {EQ(F,W): Qe DNR}
and D = {Eq(F,W) : Q € D}. In this ex-
ample, Inpoep,aw)(F) = Inpcio,w)(F)-

Corollary 3.8. For F € LL(D),

Inpe(F) = argrgin ().
TE
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Proof. It is sufficient to note that

min f(x) = min EqW = u(W)

zeR QeDNR

and
f(z) =inf{EQW : Q e DNR(A+ A(x))},

where A(x) = {h(FF —=xz) : h € R}. Thus, v € argmin, f(z) if and only if
Xp(W)NR(A+ A(z)) # (0, which, in view of Theorem 3.7, is equivalent to the inclusion
T € [NBC(F) . O

Assume that W is optimal in the sense that

u(W) = I)I(léiz‘(u(W + X) (3.5)

and suppose moreover that the set Inpcp,w)(F) of the NBC prices based on D and
W (with A = 0) consists of one point zy (this condition is satisfied if the set
D = {Eq(F,W) : Q € D} is strictly convex; see Figure 9). It is seen from the proof
of Theorem 3.7 that condition (3.5) is equivalent to: Xp(W)N R # (. Then it fol-
lows from Theorem 3.7 that Inpcp,aw)(F) # 0 (we assume that F' € L;(D)). Clearly,
INBC('D,A,W)(F) g INBC(D,W) (F) As a result, INBC(D,A,W)(F) = {LEO} SO, in this situa-
tion A can be eliminated. This situation occurs naturally as shown, in particular, by the
example below.

Example 3.9. Let u be a law invariant coherent utility function that is finite on
Gaussian random variables. Assume that u(WW) = maxyeca u(WW + X) and that (W, F)
has a Gaussian distribution.

There exists v > 0 such that, for a Gaussian random variable £ with mean m and
variance o2, we have u(£) = m — yo. Clearly, Inpc(F) C J, where J is the NBC price
based on D and W with A = 0. Using Corollary 3.8, we deduce that J consists of a

single point EF — y(f:;‘:(‘f,)vlv/)z . As Inpc(F) is non-empty, it consists of the same point. O

3.3 Multi-Agent Optimality Pricing

Let (2, F,P) be a probability space, ui,...,uy be coherent utility functions with the
weakly compact determining sets D;,..., Dy, A C L° be a convex set containing zero,
and W, € LY(Dy),...,Wx € LY(Dy). From the financial point of view, u,, A, and W,
are the coherent utility function, the set of attainable P&Ls, and the terminal endowment
of the n-th agent, respectively. We will assume that there exists a set A’ C () L(D,)NA
such that, for any n, D, NR =D, NR(A"). We also assume that each W, is optimal in
the sense that wu,(WW,) = maxxea u, (W, + X).

Definition 3.10. A multi-agent NBC price of a contingent claim F' is a real num-
ber x such that there exists no element X € A+ {h(F — ) : h € R} such that
U (Wn+X) > u,(W,) for any n. The set of the NBC prices will be denoted by Inpc(F).

From the financial point of view, a price x is fair if adding to the market a new

instrument with the initial price z and the terminal price F' does not produce a trading
opportunity that is attractive to all the agents.
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Theorem 3.11. For F €, LY(D,),
Inpc(F) = conv)y Inpo,,aw,)(F) = {EqF : Q € conv)_, (Xp,(W,) N R)},

where INpo(p,,aw,)(F) is the interval of the single-agent NBC prices based on D,
A, W,.

Proof. Let = € Inpc(F). Fix Xi,..., Xy € A, Tt follows from the weak conti-
nuity of the maps D, 3 Q — Eq(Xy,..., Xy, F) that, for each n = 1,..., N, the set
Gn = {Eq(X1,.... Xy, F —2) : Q € X, }, where X, = Xp, (W,,), is compact. Clearly,
GG, is convex. Suppose that

(conv)” | G,) N (RM x {0}) = 0.

Then there exists h € RM*! such that hy,...,hy > 0 and inf,, (h,z) > 0 for each n.
This means that infqc, EQY > 0 for each n, where Y = ' X+ - -+h™X,,,+ h™ ! (F—x).
Employing [6; Th. 2.16], we conclude that there exists ¢ > 0 such that
u(W, +€Y) > u(W,) for any n.

The obtained contradiction shows that, for any X,..., X € A, the set

N N
B(Xl,...,XM):{al,...,aN,Ql,...,QNESXHXH:ZanEQnF:x
n=1 n=1
andvVn=1,....,.N,Vm=1,..., M, EQnXmSO},

where S = {Ozl, coany > 00 25:1 o, = 1}, is non-empty. As the map &, 2 Q — EqX
is weakly continuous for each X € L!(D,), the set B(X,..., X)) is closed with respect
to the product of weak topologies. Furthermore, any finite intersection of sets of this form
is non-empty. Tikhonov’s theorem ensures that S x [[ A, is compact. Consequently,
there exists a collection aq, ..., ayN,Qq, ..., Qy that belongs to each B of this form. Then
Eq, X <0 for any n and any X € A’, which means that Q,, € X, NR. Thus, the measure
Q=)>_, @,Q, belongs to conv, (X, NR) and EqF = z.

Now, let © = EqF with Q = > ,Q,, Q, € &, NR. Suppose that there exist
X € A, h € R such that, for Y = X + h(F — z), we have u,(W, +Y) > u,(W,) for
each n. Due to the concavity of the function a — u, (W, + aY’), we get

U (W +Y) — up, (W) < limsupe™ (up (W, +eY) — up, (W)
€l0

< lim sup61< inf Eq(W,, +¢Y) — un(Wn)> = inf EqY-

el0 Qexy, QeXy,

Consequently, Eq .Y > 0 for each n, and therefore, EQY > 0. But, on the other
hand, Q € R, and therefore, EQY < Eqh(F — x) = 0. The contradiction shows that
T € INBC(F)- O

4 Equilibrium

4.1 Unconstrained Equilibrium

Let (2, F,P) be a probability space, ui,...,uy be coherent utility functions with the
weakly compact determining sets Di,..., Dy, Ai,..., Ay C L° be convex cones such
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that A, is D, -consistent for each n, and let W} € L!(D,),..., Wy € L(Dy). From the
financial point of view, u,, A,, and W, are the coherent utility function, the “personal”
set of attainable P&Ls (thus, different agents are assumed to have different access to the
market), and the terminal endowment of the n-th agent, respectively. Let us introduce the
notation D =, D,,. By R,, we will denote the set of risk-neutral measures corresponding
to A,.

Definition 4.1. The maximal overall utility is defined as

N
M = sup Zun(Wn + X, +Y,),

XTLEATL n:l
Yo €LYD): 3, Yn=0

where the sum is understood as —oo if any of the summands equals —oc.
Proposition 4.2. We have

M= inf EqW,
QeN,, PRy

where W =" W, and inf () := oco.

Lemma 4.3. Let wuq,...,uy be coherent utility functions with the weakly compact
determining sets Dy, ...,Dy. Then, for any X € L,

N
sup u,(X,) = inf EgX. 4.1
 mx) 0 (@)

Xn€L® Y, Xp= Q€N,,Dn

Remark. The left-hand side of (4.1) is called the conver convolution or the sup-
convolution of uy,...,uy (see [3], [11; Sect. 5.2]). Thus, Lemma 4.3 states that it is
a coherent utility function with the determining set (", D,, if (), D, # 0 and it is identi-
cally equal to +oo if (|, D, = 0.

Proof of Lemma 4.3. In the case, where (), D,, # (), this statement follows by
induction from a result proved in [11; Sect. 5.2].

Assume now that (), D, = 0. Find m such that ", D, # 0, while N D, = 0.
By the Hahn-Banach theorem, there exists Z € L such that

sup EqZ <0< inf EqZ
QEDerl Qemle DTL

According to the part of the lemma that has already been proved, there ex-
ist Zi,...,Z, € L* such that Y. Z, = Z and Y. u,(Z,) > 0. Then
u(Zy) + -+ + up(Zm) + umy1(—Z) > 0. Consequently, the left-hand side of (4.1) is
identically equal to +oc. a

Proof of Proposition 4.2. For any X; € Ay,..., Xy € Ayx,V1,..., Yy € LY(D)
such that > Y, =0, and any Q € (), D, NR,,, we have

N N N

> un (Wi + X +Y,) <Y Eq(Wy + Xn +Y,) <Y Eq(W, +Y;) = EW

n=1 n=1 n=1
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(to get the second inequality, we used the inclusions W, € L'(Q), ¥, € L'(Q)). Conse-
quently,
M < inf  EqW.
QeN, DPRn
Let us prove the reverse inequality. Clearly, it is sufficient to prove it for bounded W,
(since arbitrary W, € L}(D,) can be approximated by bounded ones). Proposition 2.6
and Lemma 4.3 combined together yield

N

M > sup Z U (W, + X0 + Ya)
Xn€Ay n=1
V€LY ¥ =0
N

= sup Z inf  Eq(W, +Y,)
Y,EL®: ZnYnZO n=1 QEDLNRA

= inf EQW

QeN, PnNRn

The following example shows that the restriction Y, € L}(D) in the definition of M
is essential for Proposition 4.2 and cannot be eliminated.

Example 4.4. Let N =2, D; = Dy = {P}, A, ={a&, +Y :a € R Y € L*™,
EpY = 0}, where Ep{ = Ep¢, =00, n=1,2, §& +& =1, and Wy = Wy = 0. Take
Xp=&, Yo=1/2—-¢&,, n=1,2. Then Y; + Y, =0 and W,, + X,, + Y;, = 1/2, so that

N
sup Zun(Wn + X, +Y,) =o0c.
XneAn n:l
Ya€LO: Y, Vy=0
On the other hand, (), D, "R, = {P} and EpW = 0. O

We now introduce two definitions of equilibrium. From the financial point of view, the
Pareto-type equilibrium corresponds to the global optimum, while the Arrow-Debreu-type
equilibrium corresponds to the competitive optimum.

Definition 4.5. A Pareto-type  equilibrium is a collection (X,Y) =
(Xl, Ce ,XN, Yi, Ce ,YN) such that

(a) X, € Ap;

(b) Y, € LY(D), >, Y, =0;

(c) there do not exist (X', Y") satisfying (a), (b) and such that
Vn, un(Wo + X, +Y)) > u,(W, + X,, + Y3),
I u,(Wo+ X, +Y)) > u, (W, + X, + Y2).

Remark. It is easy to see from the translation invariance property
(un(X +m) = u,(X)+ m) that condition (c) is equivalent to:

(@) 3, un(Wy + X, +Yy,) = M.

Definition 4.6. An Arrow-Debreu-type equilibrium is a collection (X,Y,;Q), where
Q € P, such that
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(a) X, € Ap;
(b) Y, € LY(D), >, Y, =0, EqY,, = 0 (so that automatically Y, € L*(Q));
(c) for any n,

Uun(Wo + Xpn+Y,) = max un (W + €+ 1).
£€Ay
UGLI(Q)ZEQHZU

Below the notation Y’ ~ Y for random vectors (Y/,...,Y}) and (Y,...,Yy) means
that there exist ai,...,ay € R such that ) a, =0 and Y, =Y, + a,. We denote

E(X,Y)={Q e P:TFY' ~Y such that (X,Y”,Q) is an Arrow-Debreu-type equilibrium}.

Theorem 4.7. Assume that M < oo (by Proposition 4.2, this is equivalent to:
N,PnNR, #0). Let X, € Ay, Y, € LX(D), Y, Y, =0. The following conditions are
equivalent:

(i) (X,Y) is a Pareto-type equilibrium;
(ii) there exist Q € P and Y' ~ Y such that (X,Y',Q) is an Arrow-Debreu-type
equilibrium.

If these conditions are satisfied, then

If each A, is a linear space, then (i), (ii) are equivalent to:
(iii) M), Xp, Wy + X, +Y,) N R, # 0.

Moreover, in this case

N
E(X,Y) =) Xp, Wy + X, +V,) NR,.

n=1

Proof. Step 1. Let us prove the implication (i)=>(ii). Take Q € Xn p,nr, (W) (this
set is non-empty due to [6; Prop. 2.9]). Using Proposition 4.2, we can write

N N N
> un (Wi + X +Y,) <Y Eq(Wy +Y,) <EQ Y (Wo+Y,) =EqW =M

n=1 n=1 n=1

(note that the expectation operator understood in the sense of [6; Def. 2.3] has the prop-
erty E(§ +n) > E€ + En). Since the left-hand side and the right-hand side of the above
inequality coincide, we get u, (W, + X, +Y,,) = Eq(W, +Y,) for any n. We can find
Y" ~ Y such that EqY, = 0 for any n. Then, for any n, £ € A,, and n € L'(Q) such
that Eqn = 0, we have

un(Wn + 5 + 77) < EQ(Wn + f + 77) < EQWn = ’LLn(Wn + X, + Yn')

Thus, (X,Y’,Q) is an Arrow-Debreu-type equilibrium.
~ Step 2. Let us prove the implication (ii)=(i). Suppose that there exist X, € A, and
Y, € L}(D,) with > ¥, =0 such that

N N
Zun(Wn+)~(n+)7n) >3 U (W + X, + V). (4.2)

n=1 n=1
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Fix n and suppose that Q ¢ D, N R,,. It is easy to check that D, N R, is L'-closed.
By the Hahn-Banach theorem, there exists 7 € L° such that Eqn < infocp 1z, Eqn.
According to Proposition 2.6, there exists £ € A, such that Eqn < u,(£+n). This means
that w, (£ +n — Eqn) > 0. Then

un(Wy, + @€ + a(n — Eqn)) —— oo. (4.3)

a— 00

On the other hand, in view of Proposition 4.2, the condition M < oo implies that
D,NR,#0. Fix Qe D,NR,. Then

un (W + af + a(n — Eqn)) < un(Wy, + Xy +Y,) < Eg(W, +Y;) < oo,

which contradicts (4.3). Thus, Q € (), D, N R,. In particular, Y, € L'(Q), so that we
can find Y’ ~ Y such that EqY, = 0 for any n. Then

N N N
S un(Wat Xo+5,) =D un(Wy+ X, + V) < un(Wy + X, + 1),
n=1 n=1 n=1

which contradicts (4.2).
Step 3. It was shown in Step 1 that

X, b, (W) € E(X,Y).

Let us prove the reverse inclusion. Take Q € £(X,Y) and find Y/ ~ Y such
that (X,Y”’,Q) is an Arrow-Debreu-type equilibrium. It was shown in Step 2 that
Q € N,Dn N R,. Applying Proposition 2.6 to the D,-consistent convex cone
A={ne€ L*:Eqn=0}, we get

sup un(Wy +n) =EQW,, n=1,...,N. (4.4)
n€L1(Q):Eqn=0
Thus,
N N N
M > uy(Wo+ X, +Y,) =) un(Wy + X, +Y]) > EqW, = EqWV.
n=1 n=1 n=1

An application of Proposition 4.2 yields the desired statement.
Step 4. Assume that each A, is linear and let us prove the inclusion

N
() X, (Wa + Xo + Y,) MR, C E(X,Y).
n=1
Take Q from the left-hand side of this inclusion. Find Y’ ~ Y such that EqY, = 0 for
any n. Clearly, Q € ", Xp, (W, + X, +Y,)) N R,, so that
Uy(Wy + X, +Y)) =Eq(W,, + X,, +Y)) =Eq(W, + X,,), n=1,...,N.

As Xp, (W4 X,,+Y]) # (), we have (by the definition of X') that u, (W,+X,+Y)) > —co.
Furthermore, (by the definition of R) EqX,, < 0, so that X,, € L'(Q). Forany n, £ € A,
and n € L'(Q) such that Eqn = 0, we have

Un(Wn + & +n) <Eq(Wn + &+ 1) = Eq(Wy + &)
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(in the second inequality, we used the linearity of A, ), so that (X,Y”,Q) is an Arrow-
Debreu-type equilibrium.

Step 5. Assume that each A, is linear and let us prove the inclusion

N
E(X,Y) C () Xp,(Wa + X, + Vo) N R,

n=1

Take Q € £(X,Y) and find Y’ ~ Y such that (X,Y”, Q) is an Arrow-Debreu-type equi-
librium. It was shown in Step 2 that Q € (), D,NR,. Applying (4.4) and Proposition 2.6,
we get

EQW, = sup Un (W + 1) < up(Wy + X, +Y))
n€LY(Q) : Eqn=0

SEQ(Wn+Xn+Y7:)SEQWn, nzl,...,N.

Consequently, u,(W,, + X, +Y,) = Eq(W, + X,, + Y,)) for any n, which means that
Qeﬂn'XDn(Wn_"Xn_"Yr:):ﬂnXDn(Wn+Xn+Yn)- O

The assumption that each A, is linear is essential for the second part of Theorem 4.7
as shown by the following example.

Example 4.8. Let N =2, D; =Dy, = {P}, A = Ay =R_ (i.e. Ay, Ay consist of
random variables that are identically equal to a negative constant), and W; = W, = 0.
Take X; = Xy = -1, Y7 =Y, = 0. Then (), Xp, (X, +Y,) N R, = {P}, but clearly
(X,Y) is not a Pareto-type equilibrium. O

By Theorem 4.7, the set £(X,Y) does not depend on (X,Y). We call it the
set of equilibrium measures and denote by & (Theorem 4.7 yields the representation
£ = X p,0m, (W),

From the financial point of view, £ is the set of equilibrium price systems. Thus, it
is natural to define the set of unconstrained equilibrium prices of a contingent claim F

simply as Ig(F) :={EqF : Q € £}.

4.2 Constrained Equilibrium

Let u,, D,, A,, and W, be the same as in the previous subsection. Let S be a d-
dimensional random vector whose components belong to (), L(D,). From the financial
point of view, there are d contracts that can be exchanged between the agents, and S°
means the discounted payoff of the i-th contract (for example, if the i-th contract is a
share, S is its discounted price at time 1). There is no relation between S and A,;
A, means the set of P&Ls that can be obtained by the n-th agent by trading on a “big
market”, without trading the assets 1,...,d (if there is no “big market”, i.e. the whole
market consists of these agents and these contracts, then A4, = 0).

Definition 4.9. The maximal overall utility is defined as
N
M = sup Zun(Wn+Xn+<hn,S>),
Xn€An n=1

hn€RY: Y hyp=0

where the sum is understood as —oo if any of the summands equals —oc.
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Let us introduce the notation

G, =cl{EqS: Q€ D, NR,},
Gy = {Eq(S,W,) : Q € D, N R},
fulz) =inf{y : (z,y) € G,}, =z € Gy,

N
G=[)Gn
n=1

f@) =) falz), z€G.

Proposition 4.10. We have

M = inf f(z),

zelG

where inf () := oco.
Proof. By Proposition 2.6, we have for any h, € R?,

sup u, (W, + X, + (hy, S)) = inf  Eq(W,, + (hy, S))

Xn€Ap QEDRNRA

= inf ((hn, 1), )

Cveén

= inf ((hn, 2) + fu(2)).

ZL‘GGn

Standard results of convex analysis (see [24; Th. 16.4]) yield

N

M = sup Z inf ((hp,x) + fn(x)) = inf f(z).

hn€RE: Y hp=0 7 ©€Gn zeqd
We now introduce two definitions of equilibrium.

Definition 4.11. A Pareto-type  equilibrium is a collection (X, h) =
(X1,..., XN, h1,...,hy) such that

(a) X, € Ap;
(b) h, € RY, > onhn=0;
(c) there do not exist (X', h') satisfying (a), (b) and such that
Vi, (W, + X+ (b, S)) > upy(W,, + Xy + (B, S)),
Incu, (W, + X, + (hl, S)) > uy(Wo + Xy, + (B, S)).
Remark. It is easy to see from the translation invariance property
(un(X +m) = u,(X) + m) that condition (c) is equivalent to:
() >, un(Wy + Xy, + (hn, S)) = M.
Definition 4.12. An Arrow-Debreu-type equilibrium is a collection (X, h, P), where
P € R¢, such that
(a) X, € Ap;
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(b) h, €RY, Y h, =0;
(c) for any n,

Un(Wy + X, + (hy, S — P)) = max_ u,(W,, + &+ (n,S — P)).

£€EAR, NER
Let us introduce the notation
E(X,h) ={P € R : (X, h, P) is an Arrow-Debreu-type equilibrium}.
Theorem 4.13. Assume that M < oo (by Proposition 4.10, this is equivalent to:

G#0). Let X, € Ay, hy, € R, > h, =0. The following conditions are equivalent:

(i) (X, h) is a Pareto-type equilibrium;
(ii) there exists P € R? such that (X, h, P) is an Arrow-Debreu-type equilibrium.

If these conditions are satisfied, then

E(X,h) = argmin f(x).

z€G
If each A, is a linear space, then (i), (ii) are equivalent to:

(iii) N, {EqS : Q € Xp, (W, + X,, + (h,, S)) N R, } # 0.

Moreover, in this case

E(X,h) = [{EaS : Q € Xp, (W, + Xy, + (ha, S)) N R, }.

n=1

Proof. Step 1. Let us prove the implication (i)=(ii). Take P € argmin .. f(z).
Using Proposition 4.10, we can write

WE

inf  Eq(Wp + (hn, S))

N
> un(Wy + X + (hn, S)) <
n=1

3
I

WE

inf ((hp, 1), z)

1z2€Gy

3
I

WE

(fu(P) + (hy, P)) = f(P) = M.

i
L

As the left-hand side and the right-hand side of this inequality coincide, we get
un (Wi + Xy + (hy, S)) = fu(P) + (hyn, P) for any n. Thus, for any n, £ € A,, and
n € R?, we have

Un(Wn+§+<77aS_P>):un(Wn+§+<nas>)_<n7P>
< inf EQ(Wn+<77: S>)_ <77a P>

= inf ((1.1),2) — (1, P)

< Fu(P)+ (1, P) — (. P) = £u(P)
= u,(Wy + Xy + (hy, S — P)).

Thus, (X, h, P) is an Arrow-Debreu-type equilibrium.

26



Step 2. The implication (ii)=> (i) follows from the inequality: for any X, € A, and
h, € RY with 3" h, =0, we have

N

> (W + X+ (7 S)) =D un(Woy + Xy + (ha, S — P))

n=1

N

n=1

= un (W + X + (B, S)).

n=1
Step 3. It was shown in Step 1 that

argmin f(z) C E(X, h).
z€G

Let us prove the reverse inclusion. Take P € E(X,h). Fix n and suppose that P ¢ G,,.
Then there exists n € R? such that

<n7P> < inf <’I’],l‘> = inf EQ<n7 S>

z€Gp QeDrNRy

According to Proposition 2.6, there exists £ € A, such that (n, P) < u,({+(n,S)). Then

u,(Wy, + @€ + (an, S — P)) —— oc. (4.5)
a—0o0
In view of Proposition 4.10, the condition M < oo implies that D, N R, # 0. Fix
QeD,NR,. Then

U (Wi + @€ + {(an, S — P)) < up,(Wy, + Xy, + (hy, S — P))
< Eq(W,, + (hn, S — P)) < o0,

which contradicts (4.5). Thus, P € G. Using Proposition 2.6, we can write

N

M > g (W + Xy + (hn, S = P))
n=1
N

- E sup un(Wn+£+<n:S_P>)
n=1 §€An777€Rd
N

= Z sup inf Eq(W, + (n,S — P))

n—1 N€R? QEDLNRy,
N
= Z sup inf (fp(x)+ (n,z — P))

n—1 NER? T€Gn
N

=3 h(P) = 1(P).
n=1

An application of Proposition 4.10 yields the desired statement.
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Step 4. Assume that each A, is linear and let us prove the inclusion

N
({ES : Q € Xp, (W, + Xy, + (hn, S)) "R, } C E(X, ).

n=1

Take P from the left-hand side of this inclusion. Using the same arguments as in the proof
of [6; Prop. 2.9], we can find for every n a measure Q, € Xp, (W, + X, + (h,, S)) N R,
such that P = Eq,S (using the D,-consistency of A,, it is easy to check that
Xp, Wy + X, + {hn, S)) N'R,, is L'-closed, so this set is weakly compact). Then

un (W, + X5, + (hy, S — P)) = Eq, (W, + X, + (hy, S)) — (h, P)
=Eq, (W, +X,), n=1,...,N.

As Xp, (W, + X, + (hn,S)) # 0, we have (by the definition of X') that
u,(Wy + X + (hy, S)) > —oo. Furthermore, (by the definition of R) Eq, X, < 0,
so that X,, € L'(Q,). For any n, £ € A,, and n € R, we have

= EQn(Wn + X, + (6 - Xn)) < EQn(Wn + Xn)
= u, (W, + X, + (hn, S — P))

(in the second inequality, we used the linearity of A, ), so that (X, h, P) is an Arrow-
Debreu-type equilibrium.

Step 5. Assume that each A, is linear and let us prove the inclusion

N
E(X,h) C ({EaS : Q € Xp, (W, + X, + (B, S)) N R}

n=1

Take P € E(X,h). It was shown in Step 3 that P € G. Using the same arguments as in
the proof of [6; Prop. 2.9], we can find for every n a measure Q, € D, N R, such that
Eq,S = P and Eq, W, = f.(P). Applying Proposition 2.6, we get
fn(P) = sup inf (fu(z)+ (n,z — P))
ﬂERd r€Gy

=sup inf Eq(W,+ (n,S— P))

nER? QEDRNRA

= sup Un(Wn+§+<77,S—P>)
feA'runeRd

= u,(Wy, + X, + (hy, S — P))
< Eq,(Wn + Xy + (hn, S — P))
< Eq,Wn = fu(P).
Consequently, u,(W,,+ X, + (h,, S — P)) = Eq, (W, + X,,+ (h,,, S — P)) for any n, which
means that Q, € Xp, (W, + X,, + (h,, S)). O
Let G denote the relative interior of G, and, for P € GG,,, we denote

Ng,(P)={n € R :{(n.1), (P, fu(P))) = inf {(n,1),2)}.

z€Gy

If G, has a non-empty interior, then Ng (P) is the set of vectors n € R? such that (n,1)

is an inner normal to G, at the point (P, f,(P)).
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Inpow., a1, m) (F) Ig(F) INBOD,, A2, w2) (F)

Figure 10. Geometric solution of the constrained equilibrium
problem. Here S = F is a one-dimensional contingent claim.
The figure shows the maximal overall utility M, the equilibrium
holdings h,,, and the equilibrium price Ig(F). It also shows the
NBC prices INpo(p,,a,,w,)(F) of different agents.

Theorem 4.14. Assume that (), G; # 0. Take P € argmin, . f(x). Then there
evist h, € Ng (P) such that ) h, = 0. Assume that, for each n, there exists
X, € argmaxgc 4 un(Wy + &+ (hy, S)). Then (X1,..., Xy, hy, ... hy, P) is an Arrow-
Debreu-type equilibrium. Conversely, any Arrow-Debreu-type equilibrium has such a form.

Proof. Denote f:(n) = inf,cq (fu(z) + (n,2)), n € R?. Standard results of con-
vex analysis (see [24; Th. 16.4]) guarantee that there exist hy,...,hy € R? such that
donhn=0and > fr(h,) = f(P). It follows from the line

N N

FPY =" falhn) <D (falP) + (ha, P)) = f(P)

n=1 n=1

that h, € Ng (P) for any n. By Proposition 2.6,

Un(Wh + X + (hp, S)) = sup u,(Wy, + &+ (hy, S))
§€AR

= inf Eq(W, + (hn,S))

QEDLNR,
= inf ((hy, 1), x)
IEén

= fr(hn) = fo(P) + (hn, P), n=1,...,N.
Consequently, for any n, £ € A,, and n € R?,

un(Wo +&+(n,S—=P)) < inf Eq(W,+ (n,S— P))

< in~f ((n,1),z) — (n, P)

— F) — (0. P) < fu(P)
= un(Wn + Xn + <hn,S - P))a
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so that (X, h, P) is an Arrow-Debreu-type equilibrium.

Conversely, let (X, h, P) be an Arrow-Debreu-type equilibrium. According to Propo-
sition 4.10, P € argmin .. f(z). Using the same arguments as in Step 1 of the
proof of Theorem 4.13, we deduce that h, € Ng (P) for any n. The inclusion
X, € argmaxge s, Un(Wy + & + (hy, S)) is clear from the definition of the Arrow-Debreu-
type equilibrium. O

By Theorem 4.13, the set E(X,Y) does not depend on (X,Y). We call it the
set of equilibrium prices and denote by E (Theorem 4.13 yields the representation
E = argmin, . f(z)).

From the financial point of view, E is the set of equilibrium price vectors for the
multidimensional contract S. If S = F' is a one-dimensional contingent claim, we call E
the set of constrained equilibrium prices of F and denote it by Ig(F).

5 Comparison of Various Pricing Techniques

In [6] and in the present paper, we have proposed seven different pricing techniques based
on coherent risks. They differ by the inputs they require and by the ideas behind them.
These techniques are compared by Figure 11 and by Table 1.

The first, the second, and the fifth techniques typically provide the whole interval of
fair prices, while the other techniques typically provide a unique price.

When applying the second and the third techniques, we can employ risk measures that
are used in practice to measure risk, like Tail VQR of order 0.05. However, for the other
five techniques one should use from the outset much more “moderate” risk measures.
The reason is that all the pricing kernels should be very close to the original probability
measure. One choice is to take D (or D,,) as HLR PD + HLR RD, where PD is the set
of possible historic measures (a typical choice is that it is a singleton) and RD is the
determining set of a risk measure, like Tail V@R of order 0.05. Another choice is that D
(or D,,) is the determining set of a measure, like Tail V@R of order close to 1.

The first six techniques provide a kernel estimate of a price. Thus, they can also be
applied to the estimation of sensitivity coefficients. The idea is as follows. Consider, as
an example, an option with the discounted payoff F' = f(S;), where S; is he terminal
price of some asset and f is a smooth function. The true value of this option is

V =Eqf(S1) = Eqf(So(1+7)),

where Q is the true valuation measure used by the market, » = (S; — Sy)/Sy, and Sy is
the initial price of the asset. The measure Q is not known exactly, but each of the first
six techniques says that Q belongs to some set Q (for example, the utility-based NGD
yields @ = DN R). The true value of the option’s delta is

oV
A= 8—50 = EQ(l + T)fI(SO(l + 7"))

As we do not know Q exactly, but only know a set, to which it belongs, we get the
following interval for deltas:

I ={Eq(1+7)f'(So(1+7)): Q€ Q}.
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Single-agent NBC prices

Unconstrained Constrained
equ1hbr1um equilibrium
prlce price

Agent- 1ndependent NBC price
Multi-agent NBC interval
RAROC-based NGD interval
Utility-based NGD interval

Figure 11. The form of fair prices provided by various techniques
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Pricing

. Inputs Form of the price interval
technique
Utility-based D, A {EQF : Qe DNR}
No Good Deals
RAROC-based PD, RD {E Jo 1 R }
’ ’ Qe (—=%PD+5RD)NR
No Good Deals AR ol Q (1+R 1+R )
Agent-independent | PD, RD, A | {EqF : Q € (1l PD + £ RD) N R},
No Better Choi
¢ DeTer Aol where R, = supy.4 RAROC(X)
{l-i—lR* Ep I + 151*12* EQ*F}’
where X, € argmaxy ., RAROC(X)
Single-agent D, AW {EQF : Q € XAp(W)NR}
No Better Choice
{EQF : Q € Xp(WW)} provided that this is a single-
ton and u(WW) = maxxea u(W + X)
Multi-agent Di,..., Dy, | {EqF : Q € convl ,(Xp, (W,) NR)}
No Better Choice | A,
Wi, ..., Wn
Unconstrained Dy,...,Dy, | {EqF : Q € £}, where £ = X p,rr, (3, Wa)
equilibrium A, ..., Ap,
Wl, . . WN
Constrained Dy, ..., Dy, | argmin, » . f,(z), where
equilibrium A AN | g () = inf{EqW, - Q € D, N Ry, EQF = 1}
Wh * WN

Table 1. The form of fair prices provided by various techniques
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