DILATATION MONOTONE RISK MEASURES
ARE LAW INVARIANT
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Abstract. We prove that on an atomless probability space every dilatation
monotone convex risk measure is law invariant. This result, combined with the
known ones, shows the equivalence between dilatation monotonicity and important
properties of convex risk measures such as law invariance and second-order stochastic
monotonicity.
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1 Introduction

In the landmark papers [2], [3], [7] Artzner, Delbaen, Eber, and Heath introduced the
notion of a coherent risk measure. By the definition, a coherent risk measure is a map
p: L>®(Q, F,P) = R satisfying the properties:
(a) (Subadditivity) p(X +Y) < p(X) + p(Y);
(b) (Monotonicity) If X <Y, then p(X) > p(Y);
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(c) (Positive homogeneity) p(AX) = Ap(X) for A > 0;
(d) (Translation invariance) p(X +m) = p(X) —m for m € R.

Later, Follmer and Schied [8], Frittelli and Rosazza Gianin [10], and Heath [13] pointed
out that the condition of positive homogeneity might be too restrictive in some applica-
tions and introduced the more general concept of a convex risk measure defined as a map
p: L — R satisfying properties (b), (d), and

(a”) (Convexity) p(AX + (1 =N)Y) < Ap(X) + (1 = X)p(Y) for X € [0,1].



Clearly, any coherent risk measure is a convex risk measure.

One of the important differences between these notions and such traditional risk mea-
sures as the variance or the Value-at-Risk (V@R) is that convex and coherent risk mea-
sures are not necessarily law invariant, where law invariance means that p(X) = p(Y)
whenever X and Y have the same distribution. As a trivial example of a coherent risk
measure that is not law invariant, take p(X) = —EqX, where Q is a probability measure
which is absolutely continuous with respect to P and Q # P.

Canonical examples of coherent risk measures such as Tail V@R (known also as Av-
erage V@R, Conditional V@R, Ezpected Shortfall, and Ezxpected Tail Loss),

d
oa(X) = —inf{EQX :Q < P and 49 < )\_1}, A€ (0,1],
dP
or Weighted V@R (known also as the spectral risk measure, see e.g. [1] and [5]),

X)) = / pa(X)p(d)N), p is a probability measure on (0, 1],
(0,1]

are law invariant. Typical examples of convex (non-coherent) risk measures such as the
robust shortfall risk (see [9; Sect. 4.9]) are also law invariant. However, there exist natural
derivative risk measures that are not law invariant. For example, if an agent with a random
endowment X can trade in the financial market, they could be interested in the following
market-adjusted convex risk measure

P (X):=inf p(X +Y),
YeA

where p is some coherent risk measure and A is the set of marketed contingent claims.
Since the set A is typically not law invariant, such p’ would not be law invariant too.
Also the factor risks p/(X) := p(E(X]Y)) introduced by Cherny and Madan [6] are not
law invariant (at the end of the introduction we give some financial interpretation of the
factor risks). Other examples of such derivative measures can be found in [4; Table 1]. To
sum up, basic risk measures are typically law invariant; derivative risk measures are not.

An explicit description of law invariant coherent risk measures was established by
Kusuoka [16] and extended to the case of convex risk measures by Kunze [15] and inde-
pendently by Frittelli and Rosazza Gianin [11] (see also [9; Th. 4.57] or [14; Th. 2.1]).
Let us recall this result: on an atomless probability space, a convex risk measure p s law
inwvariant if and only if

p(X) = sup (pH(X) 6. )
peM(0,1]
where M(0,1] is the set of all probability measures on (0,1] and § is a map from M(0,1]
to (—oo,+o0| that is not identically equal to +oo. Note that, unlike the papers men-
tioned above, we did not assume that the risk measure p satisfies the Fatou property (i.e.
that p(X,) — p(X) whenever X,, \, X a.s.) since the recent result of Jouini, Schacher-
mayer, and Touzi [14] proves that any law invariant convex risk measure on an atomless
probability space necessarily satisfies the Fatou property.
Representation (1) has a simple corollary (see [9; Cor. 4.59]): any law invariant convex
risk measure on an atomless probability space has to satisfy

p(E(X|G)) < p(X) for any X € L*®and any o-subfield G C F. (2)



Indeed, in view of (1), to prove this corollary one just needs to notice that all p, satisfy (2),
which is almost trivial. Property (2) was introduced by Leitner [17] under the name
dilatation monotonicity. This property is economically natural since the position E(X|G)
is more determined than X and thus should involve less risk.

The main result of our paper is that dilatation monotonicity implies law invariance:

Theorem 1.1. On an atomless probability space any L™ -continuous dilatation mono-
tone map R : L>* — R s law invariant.

Using translation invariance, one can easily check that any convex risk measure satisfies
|p(X) — p(Y)| < ||X = Y||g. Thus, Theorem 1.1 proves the converse of the above cited
corollary, and we conclude that on an atomless probability space a convex risk measure is
law invariant iff it is dilatation monotone.

A weaker version of Theorem 1.1 was proved by Grigoriev and Leitner [12; Th. 1.11] for
comonotonic additive coherent risk measures. However, the proof of Theorem 1.1 is quali-
tatively different from the proof of [12; Th. 1.11] and basically uses only one non-standard
and surprising phenomenon: if the probability space is atomless and P(A) = P(B), then,
for any € > 0, there exists a finite sequence of o -subfields (Gy)K_, such that

|15 — Ex o+ 0 Ei(14)] 0 <,
where Ei(-) = E(-|Gk)-

Remark. The statement above is true if instead of the indicator functions we have
any bounded identically distributed random variables. One can easily verify this using
Lemma 2.4 and the arguments from the proof of Theorem 1.1.

We prove Theorem 1.1 in the next section. In the remainder of the introduction we
provide some mathematically simple but economically useful interpretations.

First, let us mention that dilatation monotonicity is closely related to second-order
stochastic dominance. Recall that X is second-order stochastically dominated by Y
(X =2Y),if Eu(X) < Eu(Y) for all utility (i.e. increasing concave) functions u. To
make a bridge between convex risk measures and classical expected utility preferences it
is natural to study the risk measures satisfying

p(Y) < p(X) whenever X <*VY.

We call such p second-order stochastically monotone. Clearly, any second-order stochas-
tically monotone risk measure has to be law invariant. Conversely, by [9; Cor. 4.59]
combined with [14; Th. 2.1], we conclude that any law invariant convex risk measure on
an atomless probability space has to be second-order stochastically monotone.

It is well known (see e.g. [9; Cor. 2.58]) that X <? E(X|G) for any o-subfield G, and
thus second-order stochastic monotonicity implies dilatation monotonicity. However, di-
latation monotonicity is weaker than second-order stochastic monotonicity (see e.g. [12],
example on p. 42). Nevertheless, if the basis probability space is atomless, Theorem 1.1
proves that dilatation monotonicity implies law invariance, and thus all the three proper-
ties are equivalent.

Finally, let us note that dilatation monotonicity is equivalent to the property of factor
monotonicity introduced by Cherny and Madan [6]. Let p be a convex risk measure, and
let the random variables Y7, ..., Yy, represent some relevant market factors (such as price
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of oil, the S&P 500 index, or the credit spread). The factor risk driven by Yi,...,Y)ys is
the functional

Clearly, p/(-;Y1,...,Y) is again a convex risk measure. From a financial point of view,
factor risk represents the risk of X given the uncertainty inherent in Y7,...,Y,,. Roughly
speaking, the concept of factor risk extends that of systematic risk from the APT (to get
the proper understanding, assume that X, Y7,..., Yy, are jointly Gaussian). In the APT,
the more factors are considered, the bigger the systematic risk is. Thus, it is natural to
require that
(X; Y Yar) < pf (X1 Y, Y{,..., Y}
:0( N SIS M)_p( sy ALy s AMs L1y -s M’)

for all X € L*™ and all random variables Y;,..., Yy, Y/,..., Y ,. This property of p
might be called factor monotonicity. Clearly, dilatation monotonicity implies factor mono-
tonicity. Proposition 3.2 from [17] proves the converse.

To sum up, we get the following.

Corollary 1.2. Suppose that the probability space is atomless. Then, for a conver
risk measure p, the following properties are equivalent:
(i) law invariance;
(ii) dilatation monotonicity;
(iii) second-order stochastic monotonicity;
(iv) factor monotonicity;
(V) p admits a representation of the form (1).

Each of them implies the Fatou property.

2 Proof of Theorem 1.1

Lemma 2.1. Let M € N and A = UZA; A,, B= [_]iil B, be unions of disjoint sets
such that AN B =10 and P(A,) =P(B,) =2 MP(A) =2"MP(B). Let X € L™ be such
that X =1 on A and X =0 on B. Then there exist o-subfields Gi,...,Gx C F such
that Ex o---0 E1 X =Y, where E(-) = E(-|Gx) and

2-Mp onA,, n=1,...,2M,
Y=<2MMn-1) onB, n=1,...,2M,
X on (AU B)°.

Proof. We proceed by induction in M.

Base. For M =1, it is sufficient to consider G = G(A; LU By), where G(C') denotes
the maximal o-subfield of F containing a set C' as an atom. Then E(X|G) =Y.

Step. Suppose the statement is true for M and let us prove it for M +1. Consider the
sets A = Ao, U Agy, B, = Byp_1 U By, n=1,...,2M_ By the induction hypothesis,
there exist o-subfields Gi,..., G C F such that EFgro---0 B4 X =Y’, where

2-Mp on A, n=1,...,2"
Vi=<¢2Mn—-1) on B, n=1,...,24,
X on (AU B)°.

For the o-subfields Grrip = G(Agr 1 U Boy), k = 1,...,2M it is easy to verify that
Exiiovo---0oFEg10oEgo---o 31X =Y. O
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Lemma 2.2. Let M € N, N > 2" qand A = [_]7]:7:1 An, = [_]n B,, be unions of
disjoint sets such that AN B = () and P(4,) = P(B,) = N"'P(A) = N"'P(B). Let
X € L™ satisfy

n on A,, n=1,...,2M
on A,, n=2M +1,... N,
onB,, n=1,...,N —2M

2 Mpn—-N+2M—-1) onB,,n=N-2Y+1,... N,

Then there exist o-subfields G, ...,Gx C F such that Exo---0 E1X =Y, where

(oM on A,, n=1,...,N—2M

27Mn—N+2M) on A,, n=N-2"+1,... N,
Y=<2"Mn-1) on B,, n=1,...,2M,

1—-27M on B,, n=2M 41, ... N,

B on (AU B)“.

Proof. We proceed by induction in N.

Base. If N =2M then X =Y and the claim is trivial.

Step. Suppose the statement is true for N and let us prove it for N + 1. Apply-
ing the induction hypothesis to A’ = [_]7]:7:1 A, and B' = |_|,]1V:+21 B,,, we get o-subfields
Gi,...,Gg C F such that Egro---0 E1 X =Y, where

(9-M onA,, n=1,...,N —2M
27Mn—N+2M) onA,, n=N-2M+1,... N,
1 on Anyq,

Y'=20 on By,
2 M(p —2) on B,, n=2,...,2M 41,
1-27M on B,, n=2M4+2 .. N+1,
(X on (AU B)°.

For the o-subfields Gxrip = G(Ay_om s 1 UBg1), k=1,...,2M — 1 it is easy to verify
that Egiyomo o EgriyyoEgio---o 13X =Y. O

Lemma 2.3. Let A and B be disjoint sets such that P(A) = P(B). Let X € L™ be
such that X =a on A and X =b on B (a,b € R). Then, for any ¢ > 0, there exist
o-subfields Gy, ...,Gg C F such that ||[Exo---0 E1X —Y||p~ < &, where

b on A,
Y=<¢a onB,
X on (AUB)-.

Proof. Without loss of generality, a = 1, b = 0. Take M € N and N > 2™,
Since (€2, F,P) is atomless, we can represent A as [_]7]:7:1 A, and B as |_|,]1V:1 B,,, where

P(A,) = P(B,) = N7'P(A) = N~'P(B). Applying Lemma 2.1 to UZZIAn and



US:N72M+1 B,, and then Lemma 2.2 to |_|,]1V:1 A, and [_]7]:7:1 B,,, we obtain the existence
of o-subfields G,...,Gx C F such that

2—M on |_|,]1V:_12M An,
V' .= FEgro---o 1 X = 1-2"M on U5:2M+1Bna
X on (AL B)¢

and Y' € [0,1] on | )_y_ouy; An U |_|3LIZ1 B,,. Taking M sufficiently large and N > 22M

we get ||[E(Y'|G(A, B)) —Y||L~ < e, where G(A, B) is the maximal o-subfield of F
containing A and B as atoms. O

Lemma 2.4. Let X,Y € L*® and A € F be such that X and Y take on values
1,y on A, PU(X =2,} NA) =P{Y =x,}NA), and X =Y on A°. Then, for
any € > 0, there exist o-subfields Gy,...,Gx C F such that ||[Exo--- 0 E1X =Y~ < €.

Proof. We proceed by induction in N.

Base. For N =1 the statement is trivial since X =Y.

Step. Suppose the statement is true for N and let us prove it for N + 1. First,
note that it suffices to consider only the case, when P({X =z} N{Y =2} N A) = 0.
Indeed, if we prove the lemma for this case, we can prove the general case by using
A\ {X ==x,,Y =z} instead of A.

Consider the sets B, ={X = z441,Y =21} NA, k=1,...,N. We have

Y PBy) =P{Y =z} nA)=P{X =n}nA).

k=1

Since  the probability space is atomless, we can find disjoint sets
Ci,...,Cny C {X = 21} N A such that P(Cy) = P(By) (note that all Cy and By
are disjoint). Applying Lemma 2.3 to the pair (B;,C;), we get the existence of
o-subfields Gy, ...,Gg, C F such that

€
||EK1 O---0 ElX — Zl||L°° < ﬁ’
where 7 := x11p, + 221¢, + X1(B,ucy)-- Applying Lemma 2.3 successively to the pairs
(By,Cy), ..., (By,Cy), we get o-subfields (Gx, ,41,--.,Gk, )Ny such that

|Ek, 00 B, 141Zn-1— Znl|ze < %, n=2,...,N,
where
T1 on Uzzl By,
Ly =R 2k onCy, k=1,...,n,
X otherwise.

Since the linear operators Fj are contractions on L°, we derive that

9 9
||EKNO"'OE1X_ZN||L°° < ||EKNO"'OEK1—|—1Z1_ZN”LOO_'—ﬁ <0 < 5

The random variables Zy and Y have the same distribution, they take on the
values (z;)n ' on the set A\ {Y =z;}, and Zy = Y outside this set. Applying
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the induction hypothesis, we get the existence of o-subfields Gk, 11,...,Gk such that
|Ex o0 Egyi1Zn — Y|~ < /2. By the contraction property of Ej, we get

£
||EKO"'OE1X—Y||L00 < ||EKO"'OEKN+1ZN—Y||LOO+§ < e.

Proof of Theorem 1.1. Let X,Y € L* have the same distribution. Let us approx-
imate them by the finite step functions

=k 2.k
Y= 30 Dlgeap o= 30 Clpest,

k=—o00 k=—o0c

where AF = [E Eil) Clearly, X, and Y, are equal in law and
X — X, ||Loo = ||Y — Y|z < 1/n. By Lemma 2.4, for any ¢ > 0, we can find o-
subfields Gi,...,Gx such that |EFx o---0 E1 X, — Y,|[z= < . Due to the dilatation
monotonicity of R,

Using the continuity of R, we get R(X,) > R(Y},) since ¢ is arbitrary. By the symmetry,
R(X,) = R(Y,). Employing the continuity of R once again, we get R(X) = R(Y). O
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